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PREFACE

LOGLISP is basically ZETALISP [Moon, Stallman and Weinreb 1983]
with a logic programming system embedded within it. The LOGLISP
user we have in mind is thus (ideally) someone who is familiar
with ZETALISP (or, at least, LISP); we do not in this manual
address the non-LISP community, beyond some general discussion in
the first few chapters.

Ner d¢ we assume the user is already familiar with 1logic
programming cr the earlier background invelving resclution
theocrem-proving. The early chapters attempt to previde an
cverall view of the essential ideas in a fairly general setting.
In particular neo prior acquaintance with PROLOG is assumed. In
ocrder to distinguish our work from that of our PROLOG cclleagues
(which, and whom, we esteem highly) the logic programming system
2 within LOGLISP is called LOGIC. Thus we have:
LOGLISP = LOGIC + LISP. The present version cof LOGLISP has been
imprcved considerably over earlier versions, becth in the
efficiency of the implementation and in the incerporation eof
several new features which we believe will be found useful.

A, N

LOGIC differs in a number of ways from the well-known PROLOG
implementations of logic programming [Roussel 1975], [Warren
19771, (Reberts 19771, [Clark 19791]. The mest ncteworthy
difference is that LOGIC is simply a set of new LISP primitives
designed to be wused freely within LISP programs. These
primitives are invoked 1in the ordinary LISP manner by function
calls from the terminal or from within other LISP programs. They
return their results as LISP data objects which can be subjected
tc analysis and manipulation. Each of the 1legical procedures
comprising a LOGIC knowledge base is a LISP data object steored
(like the definition ¢f an ordinary LISP prccedure) amcng the
information concerning the identifier which is its name.

SALAL N,

A Thus one calls LOGIC from within LISP. It is alsc possible to
- call LISP from within LOGIC. The identifiers used as lcgical
predicate symbols, function symbels and 1individual constants
within a knowledge base or query can be given a LISP meaning by
the ordinary LISP method of definition or assignment. Some
identifiers (CAR, CONS, PLUS, etc.) already have a LISP meaning
imposed by tha system. Thus every 1lcgic censtruct (term, or
atomic sentence) is capable c¢f being interpreted as a LISP
construct. During the "deduction cycle" of LOGIC each 1legic
censtruct is "evaluated" as a LISP construct, accerding to a
suitably generalized nction of evaluation, called
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<, "LISP-reduction".

The effect of this LISP-reduction step within each deduction step
. is to make available to the LOGIC programmer virtually the full
y power of LISP. This makes trivially easy the "building-in" cof
N "immediately evaluable" nctions - but far mcre than that. 1In
. particular, LOGIC calls can be made from within LOGIC calls.

The design and implementation of LOGIC was partially supported by
the Rome Air Develcpment Center of the United States Air Force
under contracts F30602-77-C-0121 and F30602-81-C-0024, by the
Natiocnal Science Foundation under grant MCS-77-20780, and by the
University of Edinburgh under a grant from the Science Research
Council ¢of the United Kingdom.
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CHAPTER 1
INTRODUCTION

Since Kowalski's 1974 paper "Predicate Logic as Programming
Language" ([Kowalski 1974] there has been a growing interest in
the use of what he calls "logic programming” as a technique for
specifying computations. This interest has been well served by
the PROLOG programming language, first implemented in 1972 at the
University of Marseille. PROLOG supports a practical version of
logic programming and has been in constant and growing use for
over ten years.

The logic programming technique sonsists of formulating
computatiornal specifications as - set of declarative senternces,
each of which is a simple assertion of some truth - —conditional

or unconditional, general or particular - which one wishes to
record in a "knowledge base". The sentences are written formally
as "Horn clauses".

L

PSP
M A

A Horn clause has the form

PR A

B if A1 and ... and An

o

in which B is the conclusion and the A's are the conditions. If
n >0 the Horn clause is "conditional", otherwise
Tuniconditional".

I
A

'dl‘-l'
A N A

IR I % B
ety
.

«

Kowaiski writes.a conditionrnal Horn clause as
B <- A1 ... An
and »» uncorditional one as
B <~
(We shall adopt a slightly more stylized notation for use in the
computer.) Each of the A's and the B is an "atomic" sentence,

i.e., a "predication", writter as

(P S1 ... Sk)




...........................................................

in which some predicate P is ascribed to a subject (S1 ... Sk) .
A subject is a tuple of descriptive expressions each of which is
either a proper name, or a variable, or a "term", i.e., an
applicative construction written as

(F S1 ... Sn)

in which some operator F is applied to some operand (S1 ... Sn).
The operand of a construction is 1in general a tuple of
descriptive expressions of just the same kind as the subject of a
predication.

A Horn clause containing one or more variables is general, while
orne corntaining ro variable is particular.

We find it useful to make a slightly different classification of
Horn clauses. An unconditional particular Horn clause is said to
be a datum. Any other Horn clause is said to be a rule.

The variables irn a gerneral Horn clause are treated as 1if they
were governed by universal quarntifiers preceding the Horn clause.
Thus, the Horn clause

(0dd (Product x y)) <- (9dd x) (Even (Sum x y))
should be understood as being preceded by "for all x and y".
1.1 QUERIES AND ANSWERS
A knowledge base thus consists of rules and data.
For example, cconsider the knowledge base

(Male James) <-

{Male Bill) <-

(Male George) <-

(Parent Bill Mary) <-

(Parent Mary James) <-

(Parent George James) <-

(Parent James Bill) <-

‘Father a b) <- (Parent a b) (Male a)

The first seven clauses are data; the eighth is a rule.

Once such a knowledge base is given, the 1logic programmer: can
request answers to queries. It is these requests which invcke
the "logic computations™ cr deductions which reveal the implicit
content of the knowledge base.
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A query is a description
the set of all (x1 ... xk) such that (A1 and ... and An)

of a set of tuples which satisfy a given conjunction (the
cornstraint of the query). (Again, the notation used by our
System is more "mechanical" than the informal style followed in
this introduction.)

For example:

the set of all (x y) such that (Father x z) and (Father z y)
The constraint of a query may contain variables in addition to
those occurring in the answer template (x1 ... xk) of the query.

These are to be understoed as being goverred by existential
quantifiers preceding the constraint.

Thus the above query means

the set of all (x y) such that
there is a z such that
(Father x z) and (Father z'y)

The answer to such a query is then the set of all tuples whose
satisfaction of the given constraint follows logically from the
knowledge base. Thus the answer may be the empty set, or 3. set
containing just one tuple, or a set cecntaining many - even
infinitely many - tuples. If the answer set is infinite, then in
practice some finite subset of it will be supplied, or some other
description of the set will be given.

Thus the answer to the abqve query would be

{ (James Mary), (George Bill) }
On the other hand the query

the set of all x such that (Female x)
would have the answer

{}

since our little knowledge base has no data or rules about the
predicate "Female". Note that lack of information about "Female"
does not cause an error message to appear. In practice, our

logic programming system 1is prepared to report such "undefined
predicates" as errors, and normally does so, but the programmer

[ SN SN 3N 3N 4
s Y .'l 1y fo "x ,‘i J
Latets [N
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can easily suppress such reports.

" ‘e
&
! A logic computation, then, consists of the sequence of events: esd
. rnecessary to construct the answer to some query from the &;
a0 irformatior embodied in some knowledge base. N
. 1.2 PROLOG %
] e
{ These ideas were 1incorporated into the programming language iy
4 PROLOG. o
PROLOG implementations of logic programming go beyond the "pure" v
e version of it described by Kowalski. They provide certain b
. "imperative" features by which the programmer can affect the ﬁ{
deductive computation of the answer to a query, and indeed by L
which he can affect the meaning of the query and of the £
assertions in the knowledge base. -
. These "control constructs” of PROLOG have been found most wuseful ;ﬁ
g in practical applications of logic programming and we are in ro >
- sense critical of them. However, we believe that it 1is one of Rt
the essential ideas of 1logic programming to make a clean s
distinction between -the "logic" of one's program ard its N
"control".
- F:"
1.3 LOGIC 2%
Accordingly we have implemented a programming language called fi:
LOGIC, which embodies our idea of the "pure" version of logic o
programming featured in Kowalski's writings. s
'.: '.\(
- For those who may wish to avail themselves - while still in some h}
sense working within a logic programming framework - of a greater &ﬁ
degree of algorithmic control over events, we have embedded LOGIC Ft
within a system called LOGLISP. =T
1.4 LOGLISP = LOGIC + LISP ' ]
N ]
LOGLISP is a marriage of LOGIC with LISP. , &2
SN
: A LOGLISP workspace contains everything one expects to find in a E*
LISP workspace, and can be used purely as such by those who wish -
to igrore the presence of LOGIC in that workspace. s
The same LOGLISP workspace can also be used as a "pure"™ LOGIC Eg
: workspace, that 1is, as nothing but a basic logic programming e
i ernvirornmernt, in which the assertion/query style of computing can o
be corducted in just the Kowalski manrer. The logic programming —
facilities are invoked by making suitably-formed LISP calls on HQ
o
:}\'
oy
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such LISP macros as ASSERT and the query macros ALL, ANY, THE,
and SETOF. These LISP macros, together with further auxiliary
and supplementary LISP macros and functions, comprise the LOGIC
system.

A major advantage of embodying logic programming within LISP 1in
this way 1is that the LISP environment is available to the logic
programmer as a convenient host facility in which LISP functions
for editing, displaying, monitoring, debugging, inputting arnd
outputting one's assertions, queries and deductions can be
invoked interactively or under program control.

Since the putting of a query 1is just the submissiorn of an
appropriate LISP function call, this can be done either (as ir
the PROLOG systems) interactively from the terminal or internally
from within an applications program.

Sirnce the answer to a query is a LISP data object it can either
(as in PROLOG) be displayed on the terminal as a stream cr
returred to an internal call as its result and subjected, if
desired, to analysis and manipulation.

Both predicates and operators in logic expressions. can be given a
LISP meaning by suitable programmer-supplied definitions of them
as LISP functiorn rames. Some proper names indeed have & LISP
meaning which 1is present in every workspace as part of LISP
itself.

By a benign extension of the "pure" logic programming paradigm,
LOGLISP 1is capable of recognizing such predicates and operators
during the deduction cycle of LOGIC. The predications and
constructions in whose heads they occur are thereby treated as
LISP-meaningful function calls, and are replaced in situ by
appropriate equivalents obtained by "reduction”. '

1.5 REUUCTION SEMANTICS VS. DENOTATION SEMANTICS
LISP users are accustomed to working with a "read-eval-print"
loop at the top level of interaction with the machire. That is,
the user types in an expression E and the machine prints out the
object D which is denoted by E. The object D is constructed by
evaluating E.
Thus, if the expression

(+ (* 3 4) (* 4 5))

is typed in, the object

A
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is printed. If the expression
. (QUOTE (+ (* 3 4)(* 4 5)) )
? is typed in, then the object
(+ (* 3 4)(* 4 5))
is printed.

3 In the first case, the E we enter and the D we get back are
equivalent expressions. They both derote the same number. Some
pecple (and indeed all LISP manuals) say that "32" is a number.
In fact it is a numeral - an expression - rot a number. You can

. print it, and rumbers can't be printed. So in spite of the

"official"” story, in this first case E does not denote D, but

rather both E and D denote the number thirty-two. E and D, that

is, are equivalent expressions, and what LISP does is to take E

ard reduce it to D.

In the second case, however, LISP really dces accept an E and
produce the denotation D of E. Quotations really do derote what
. they quote. So in this case, E and D are not -equivalent, ard
; LISP is not simply reducing E to D.

In LOGLISP we have found it nrecessary to make LISP-reduction,
rather than LISP-evaluation, the process ¢that is applied to
expressions when LISP is called from LOGIC. Ideally, we would
implement a "read-reduce-print™ 1loop at the top level, rather
than the traditional "read-eval-print" loop, in order to have a
more systematic LISP, However, we have taken it as one of our
design principles that LOGLISP should merely extend, not mcdify,
LISP as it stards.

One of the pleasant things about reduction is that it is always
defined. For example, the expression

(+« (* 3 ) x)
reduces to

(+ 12 x)
instead of provoking an.error message. Reduction consists of the
persistent replacement of subexpressions according to "rewrite

rules" which are either system-defined (as e.g. the rule
"(* 3 4) = 12" defined by the multiplication operation) or

- 16 =




user-defined (e.g. by naming and defining a function with LISP).

Reductiorn and instantiation ordinarily interact 1in a quite
straightforward way. If we substitute 7 for x in "(+ (®* 3 4) x)"
we obtain the expression

(+ (* 3 4) 7)

which reduces to "19". If we make the same substitution 1in
"(y 12 x)" we obtain "(+ 12 7)", which also reduces to "19".

Reduction agrees with evaluation in the cases where the terminal
expression is "an atom which denotes itself™ - such as a numeral,
or T, or NIL. It disagrees with evaluation in the cases (such as
quotation) where evaluation of E produces a D which is not
equivalent to E. LOGIC 1looks to LISP-reduction to trarnsform
predications and constructions into eguivalent predications and
cornstructions

O T Il N 4

1.6 LOGIC CAN CALL LOGIC

The effect of this LISP-reduction step, performed once in every
iteratiorn of LOGIC's deduction cycle, 1is to give the LOGIC

=, programmer the means to invoke very nearly the full power of LISP
from within logic expressions.

This fact, together with-the previously mentioned fact that LOGIC
calls are simply certain LISP calls, means that it is very easy
to initiate subordinate deductions during a deduction, by making
recursive calls on LOGIC from within LOGIC.

Thus LISP is not only a rich and convenient host environment for
LOGIC programming, but also a partner in the novel hybrid style
N of "LOGLISP" programming in which LISP and LOGIC call each other,
- and themselves, recursively.

The following chapters describe LOGLISP in full. The background
ideas are explained in detail, and the desigr and implementation
are presented both "top-down™ and "bottom-up". Examples of
applications of LOGLISP are given which illustrate its novel
capabilities.

LOGLISP runs on the DEC-10 under the TOP3-10 operating - system
using a version of Rutgers-UCI LISP, essentially that described
A in [Meehan 1979], and on the LMI Lambda using Zetalisp [Moon and
. Weinreb 80].
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CHAPTER 2
NOTIONS AND NOTATIONS.

In this manual we are concerned with computations whose data are
expressions. It will be wuseful to have the basic ideas and
rnotational conventions available from the outset, and in this
chapter we discuss the most important of these. The general
framework is that of LISP, augmented in certain ways to
accommodate the needs of LOGIC.

2.1 EXPRESSIONS

LISP has two kinds of expression: atoms and dotted pairs. For
the purposes of LOGIC we further divide the atoms into two kinds:
variables and proper rames. Therefore we have three kinds of
expressions:

‘variables
proper names
dotted pairs

A variable is an identifier which begins with a 1lower case
letter. (This is our usual convention. We allow the programmer
to choose others wher appropriate.) A proper name is any atom
which 1is not a variable (ir particular, strings and numerals are
proper names).

A dotted pair is a composite expression with two immediate
cor.stituents, called its head and its tail, both of which are
expressions. We have three formal predicates, for use in writing
algorithms, which correspond to the three kinds of expression.

(VARIABLE u) = T if u is a variable,
(NAME u) = T 1if u is a proper name,
(CONSP u) = T if u is a dotted pair,

NIL otherwise
NIL otherwise
NIL otherwise

We follow LISP's conventior that truth is dernoted by T, falsehoced
by NIL.
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2.2 NOTATION FOR DOTTED PAIRS AND LISTS

certain expressions as lists and writing them without dots. All
lists are dotted pairs except for one, which is the proper name: ‘
NIL. NIL is known as the empty list, and may also be written: T
(). Lists other than () are said to be nonempty. A norempty )
list. is any dotted pair whose tail is a list. A nornempty list L
may be writtern by writing its one or more components in order, e
with a 1left parenthesis before the first comporent and a right -
parenthesis after the last. The head of a 1list 1is its first

v

We use the notation of LISP, which we review briefly here. p
The dotted pair whose head is the atom A and whose tail 1is the ;é
atom 17 is written .
(A . 17)
More gerierally, we express any dotted pair by writing its head, F?
ther a dot, then its tail, all enclosed in parentheses. Thus t%
(CA . 17) . (B . C)) Eﬁ
%; thg)dotted pair whose head is (A . 17) and whose tail |is .
A cornsiderable notational economy 1is achieved by identifying %E

comporient, and in general the (i + 1)st. compornent of a list is o
the ith component of its tail. Thus the list S
(0. (2. (4. (6 . (3 . (BINGO . NIL)))))) =

has six components and would be written
(0 2 46 8 BINGO) 533
Note that the tail of a nonempty list is just the 1list of its E?;
remaining componerts after the head has beer removed. s
Both 1list- and dot-rotations are blended together in the e
converntion whereby, e.g., ' o
(A .(B.(C.(D.(E.(F.GHNN o5

car. be written 2
(ABCDETF . G) gé

showirg that it is like a nonempty 1list in having successive ;QE
comporients, but wunlike a 1list in that its "final tail" is not e
N
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NIL. 1In general, an arbitrary right-associated nest of dotted
pairs

(x1 . (x2 . ... (xn . xn+1) ...))
is writable as the "dotted list"
(x1 x2 ... xn . xn+1)
and as the list
(x1 x2 ... xn)
in the special case that xn+1 is NIL.
2.3 NOTATIONS FOR LISP COMPUTATIONS

Although LISP expressions are of interest in themselves, LISP is
a programming language in which certain expressions are
interpreted as programs whose execution yields expressions as
values. The most important of these are the applications. An
application is a 1list whose head is an identifier, the name of a
function, and whose remaining entries (if any) are expressions
specifying the arguments of the function; the computation thus
denoted 1is the application of the function named by the head to
the values of the argument expressions.

To illustrate, the function which constructs a dotted pair from
its two argument values is called CONS, and, e.g., the value of
"(CONS 1 2)" is the pair (1 . 2). The decomposition functions
are CAR, which yields the head of the pair which is its argumernt,
and CDR, which yields the tail of 1its argument (both are
uridefined for atomic arguments). We have the fundamental
identities

(CAR (CONS u v))
(CDR (CONS u v))

THNT]
<

where u and v stand for any expressions.

When LISP expressions are interpreted as programs, numerals and
strings are taken to be constants (i.e., to denote themselves) as
also are the identifiers T and NIL. All other identifiers are
variables, except wher. they appear as function names. We use
quotations to denote other expressions. A quotation is a list of

two components whose head is the identifier QUOTE and whose

secornd component is an expression. The value of a quotation is
its second component; thus the value of (QUOTE (A . B)) is the
pair (A . B). Though standard, this notation is rather
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cumbersome and we follow the usual convention that,
(QUOTE (A . 17)) may be abbreviated as '(A . 17).

This said, we can write
(CONS 1 '(2 3 4)) = (1 2 3 4)
(CAR '(1 2 3 4)) = 1
(CDR '(1 23 4)) = "(23 W)

It is not mere pedantry that we have written quotations on the
right of two of these equations. Both sides of such an equation
are to be interpreted as "programs", and in writing such an
equation we <claim that ¢the two sides have the same value. It
would be incorrect to write

% (CONS 'a '(B C)) = (A BC) **
though the casual reader might overlook this slip, since A is

crdirarily the name of a LISP function. Contrast, though,
equation

(CONS 'CONS '(1 2)) = '(CONS 1 2)
which is correct, with
#%  (COFMS 'CONS '(1 2)) = (CONS 1 2) #*#
which is quite plainl} wrong. The value of the left side is the

expressiorn "(CONS 1 2)", while the value of the right is the
expression "(1 . 2)".

Strictly as a matter of taste we shall write variables in LISP
programs with lower casé letters. This correct, though
unorthodox, style is consistent with the conventions we shall
introduce later for LOGIC programs.

Some additiorial functions will be used for computing with 1lists.
The function which concatenates two lists is APPEND, defired by

(APPEND la 1b) = if la is () then 1b
. else (CONS (CAR la) (APPEND (CDR la) 1b))

(APPEND '(1 2 3) '"(4 5 6)) = '"(1 23 45 6)

The length of a list is the number of comporients it has:
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(LENGTH 1st) = if 1st is () then O else 1 + (LENGTH (CDR 1st))
2.4 PATHS. STRUCTURES. PRINTABLE EXPRESSIONS

The notion of a path is helpful in understanding the structure of 5
expressiors. —d

!
(4
-4

A path is a function obtairned by composing CAR and CDR. The -
length of a path is the number of CAR's and CDR's in the
composition. Thus CAR and CDR are the two paths of 1length 1. o
The four paths of length 2 are the functions

LI
.
v
vy

(CDR (CAR u))
(CDR (CDR u))

(CAAR u) = (CAR (CAR u)) (CDAR u)
(CADR u) = (CAR (CDR u)) (CDDR wu)

Amor.g the paths of length 3 is, e.g., the function
(CADDR u) = (CAR (CDR (CDR u)))

We spell the names of these functior according to the usual LISP
convention, beginning with C, followed by an A or a D for each
CAR or CDR in the composition, and ending with R.

Thus CADDDAAADADAADADDDADADADADDDDDDAR is a path of 1lerngth 31.
This notation is quite general, but no actual LISP implementation
Known to us supports this spelling of paths for lengths greater
than 4, . '

" The identity Tunction I is the (only) path of length O.

An expression is said to admit a path p if the result of applying
p to it is defined. Thus, every expression admits I, and every
dotted pair also admits CAR and CDR. Variables arnd proper nrames
admit only I, and this fact is their characteristic structural
property. In general the set of all paths admitted by an
expression exp is called the structure of exp, and gives a rather
direct portrayal of exp's "shape".

A useful way to represent ar expression is as a connected
directed graph with two kinds of nodes - atoms and dotted pairs.
A node which represents an atom has no out-arcs, A node which
represents a dotted pair has exactly two out-arcs, one labelled
CAR and the other labelled CDR. Each arc impinges upon exactly
orne rode. Each node which represents an atom is labelled by the S
"prirntrname" of that atom. There is a distinguished node called e

the root of the expression, from which there is at least ore N
chain of arcs to every node in the expression. Each such chain =
beginning at the root node describes in the obvious way a o)

composition of the functions CAR and CDR (the one obtairned by




reading the labels on the successive arcs of the path in reverse
order). Such a graph G represents the expression exp if the
paths admitted by exp are exactly those described by the chains
of G, and if when (p exp) is an atom x, the chain describing p in
G has x as its terminal ncde.

An expressicr may have many -~ even infinitely many -~ such
representations as a graph.

Thus the expression whose head is 0 and whose tail is itself can
be represented by the graph:

with two rnodes, ore of which is a dotted pair and the root, the
other of which is the atom 0.

In such an expression-graph two chains are equivalent if they
lead -from the root to the same node. Thus in the above graph
there are two equivalence classes of chains, namely those
describing the paths in

{ I, CDR, CDDR, CDDDR, eoe }

-

-
-

"
.I

P

arnd those describing the paths in

o0 8 8
.'.l"‘.l‘

{ CAR, CADR, CADDR, CADDDR, ... } .

AR AAAAD

This illustrates how in general the paths admitted by a given
expression A are partitioned by each graph G which represents A
into equivalence classes which correspond abstractly to the nodes
of G. The class containing I always corresponds to the root. 1In
gerieral the system cf equivalence classes shows how the structure
of the expression is "shared" when represented by a graph. The
same expression can have different sharing systems, corresponding
to the different graphs which represent it. For example, the
expressionr whose head is 0 and whose tail 1is 1itself can be
represernted by many other graphs, such as the (infinite) tree
whose sharing classes are
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{11}, {CAR}, { CDR '}, { CADR }, { CDDR }, ...

<9

.'_‘i

that is, all singletons. In this representation there 1is nc SRS

sharing at all. ;3;

The printable expressions are those whose structure is finite. . iiﬁ

Not all expressions are printable. For example, the dotted pair e d

whose head is 0 and whose tail is itself is not printable, sirnce e

its structure is the infinite set of paths h

{1, CAR, CDR, CADR, CDDR, CADDR, CDDDR, ... } QIE

It may be described as the expression which solves the equation "l

e

x = (CONS 0 x) N

and we may reason about it from this description. We may also ‘,;
represent it as . a finite (cyclic) graph as discussed above. ]
However, to attempt to print it would result in a nonterminating ]

3 process. R
3 2.5 ENVIRONMENTS

A dotted pair whose head is a variable represents a binding.

A list of such dotted pairs with distinct heads repfesénts an
environment.

Intuitively an environment is a collection of replacement
instructions coded as dotted pairs, each one .saying that a
certain variable (its head) 1is to be replaced by a certain
expressiorn (its tail). An environment which ¢contains all the
bindirgs of thc environment env (and perhaps other bindings) is
called an externsion of env.

2.6 THE NOTION DEF
If env is an environment and v is an expression we say that v is

defined 1in env if, and onily if, there is a birnding ir env whose
head is v. Accordirgly we introduce the function DEF by the

scheme
(DEF v env) = if v is () then NIL o
else if (CAAR env) is v then T ]
else (DEF v (CDR env)) o
which computes the truth value that v is defined in env. Note ,E?:

that if v is defined in env thern v is a variable.
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2.7 THE NOTIONS IMM AND ULT

If v is defined in env we say that the immediate associate of v
in env is the tail of the bindirng in env whose head is v, and we
define the corresponding function IMM by

(IMM v env) = if (CAAR env) is v then (CDAR env)
else (IMM v (CDR env))

with the understanding that IMM will never be invoked for a v ard
env such that v is not defined in env. The immediate associate
in env of a variable v may itself be a variable defined in env.
In such a case we may wish to track down the ultimate associate
of v in env - namely the first expression in the series

v , (IMM v env), (IMM (IMM v env) env) ...,

which is rnot defined in env. Accordingly we define the function
ULT by

(ULT v env) = if (DEF v env) thern (ULT (IMM v env) env) else v

which computes, for any expression v and environment env, the
ultimate associate of v 1in env. For example, if env is the
environment

((x . y) (y . 2z) (z . (Fv (Br s)) (r. (Gs)) (s . 5))

then the immediate associate of x in env is y, but the ultimate
associate of x in env is (F v (B r s)).

Note. Although we have defirned DEF, IMM.and ULT for arguments
which are respectively a variable v and an environment env, it
should be rioted that all three functions work when v is any
expressiorn and env is any list of dotted pairs. This comment
will be recalled 1later .when we have defined the function
UNIFY. End of note.

2.8 REALIZING EXPRESSIONS IN ENVIRONMENTS

Given ar expression exp and an environment env, we consider the
result of replacing each variable in exp by 1its immediate
associate in env. This expression is called the realization of
exp 1in env. To compute the realization of exp in env we use the
function REAL, defired by:

(REAL exp env) = if (CONSP exp) ther
(CONS (REAL (CAR exp) env)
(REAL (CDR exp) env))
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else if (DEF exp erv) then (IMM exp env) _
else exp 5§ﬂ

We note that, for example, the realization of (+ x y) 1in the Q%ﬁ
environment e
((x . y) (y .2) (z . (FA(Br s))) (r . (Gs)) (s . 5))

is (+ y 2).

We are also interested in recursive realizations. For example,
if we start with (+ x y) we obtain each of the followirg
expressions by repeatedly realizing the previous one 1in the
environment above:

. Realizing the final expression 1in this environment merely
reproduces it. This final expression is therefore by definition
the recursive realization of (+ x y) in the givern environment.
In general the recursive realization of an expression exp in an
ernvirorment env is defined by:

(+ y 2) T
(+ z (F A (Br s))) RS
(+ (FA(Br s)) (FA(BI(GSs)S))) . o]
(+ (F A (B (G s)S)) (FA (B 5)5)) ]
(¢« (F A (B (G5)5)) (FA(BI(GS5)5))) L

AR g

(RECREAL exp env) = if (CONSP exp) then
" (CONS (RECREAL (CAR exp) env)
(RECREAL (CDR exp) env))
else if (DEF exp env) then (RECREAL (ULT exp env) env)
else exp

2.9 UNPRINTABLE RECURSIVE REALIZATIONS OF PRINTABLE EXPRESSIONS
It can happen that a printable expression may have an unprintable

recursive realization 1in a printable envircnment. For example,
ir. the environment
((x . (0 . x))N
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the expression x has the recursive realization

~y
i

(0 . (0. (0. e )))

;f which is the "infinite expression"™ whose head is 0 and whose tail ;52
- is itself. ~.}
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2.10 UNIFICATION

A fundamental riotion in logic programming is the operation of
unifying two expressions expa and expb relative to a given
envirormert env, This operation yields a result, denoted by
(UNIFY expa expb env), which is either the message "IMPOSSIBLE"
indicating that expa and expb cannot be unified with respect to
env, or else is an extension of env in which the recursive
realizations of expa and expb are identical. In the latter case
we say that the environment (UNIFY expa expb env) is the most
general unifier ("mgu") of expa and expb with respect to env. By
definition, we then have that

(RECREAL expa (UNIFY expa expb ernv))
= (RECREAL expb (UNIFY expa expb env))

”
]

i The computaticn of (UNIFY expa expb env) is defined by
g (UNIFY expa expb env) =

i if env is "IMPOSSIBLE" ther "IMPOSSIBLE"
- else (EQUATE (ULT expa env) (ULT expb env) env)

where
(EQUATE expa expb env) =

if 2xpa is expb then env AN,

else if (VARIABLE expa) then (CONS (CONS expa expb) env) RN

else if (VARIABLE expb) thern (CONS (CONS expb expa) env)

else if not (CONSP expa) then "IMPOSSIBLE"

else if not (CONSP expb) then "IMPOSSIBLE" : ~

else (UNIFY (CDR expa) (CDR expb) ' s
~(UNIFY (CAR expa) (CAR expb) env)) :

Note. If in the last line of the definition of UNIFY we replace
the argument "env" by the argument S

(CONS (CONS expa expb) env)

we strengther the unification algorithm considerably. It will be N
recalled that DEF, IMM and ULT are capable of accepting more o
gerieral arguments, and of operating in effect as an associative S

retrieval system. Wher. UNIFY 1is altered in this way, the :
"environmerts" are made to do double duty. We not only record s
birndings of variables in them, but also the pairs of expressions IR
erncounnitered in the firnal arm of the conditional - 1i.e., pairs T
which must be wunified as part of the overall task. We are -

: : . ) =y
saying, in effect, that one of these expressions 1is to be RS
RARNY

DO,

E

~ 3
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replaced by the other if it should be encountered later. This
change in the definition of UNIFY guarantees its convergence even
or. pathological cases 1involving complex infinite expressiorns.
However, the extra overhead may be considered too great to
warrant provision for such pathological cases. In LOGLISP we
have implemented the algorithm essentially as
given. End of note.

The mgu of (P (G x y) x y) and (P a (H b) c¢) with respect to the
empty environment () is

((y . ¢) (x . (Hb)) (a . (G x )

and in this environment both expressions are recursively realized
as

h (P (G (H b) ¢) (H D) ¢)

The mgu of expa and expb with respect to env is intuitively the
: mcst gerneral way that env can be extended to an environment in
N which expa and expb can be recursively realized as identical
- expressions. It 1is possible that unifying expa and expb will
make them unprintable. For example, the most gerneral unifier of
the expressions x and (0 . x) with respeet to the empty
environment () is the environment ((x . (0 . x))) in which x is
bound to (0 . x). This shows that in general it is possible for
(UNIFY expa expb env) to be arn environment in which the recursive
realizations of expa and expb are identical but unprintable.

2.11 SUBSTITUTIONS

Some readers may be more familiar with the usual treatment of
unification, which 1is developed in terms of the 1idea of
substitutiorns. A substitution is a mapping from expressions to
expressiocrns which preserves proper names and the dotted pair

" structure. More precisely, a mappirg s from expressions to
expressions 1is a substitution if, and only if, it satisfies the
two corditions:

p*s

: for all proper names p,
(CONS x y)*s

P
(CONS x¥*s y¥*g) for all expressions x and y.

We deriote the result of applying a substitution s to an
expression x by the rotation: x¥%*s, as illustrated above. Arn
X important property of a substitution is that its effect upon any
. expression is completely determired by 1its effect on the
variables (if any) which it actually changes. By 1listing those
variables, each -equated to its image under the substitution, we
therefore give a complete description of the substitution. But
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the information in such a 1list of equations is just what is

N provided by an environment. The list of equations R
. _:.:
N vl = al, ..., vh = an -
A N X
- correspords to the environment ey
o ((vl1 . a1) ... (vn . an)) 5
E and conversely. Indeed if s corresponds in this way to the ?i
.- environment ernv, then the image x*s of any expression x under s g:
W is just the expressiorn (REAL x env). We write [env] for the S
substitution corresponding in this way to the environment env.
Thus we have N
x*[env] = (REAL x env) R
for all expressions x and environments env. In this ii
correspondence between environments and substitutions, the empty e
environment corresponds to the identity substitution (which g
transforms every expression into itself).
~ Composition of two substitutions sa and sb yields a substitution
N we denote by sa*sb (read "sa followed by sb") which sends each e
- expressicn x into x*(sa*sb) = (x*sa)®*sb. If sa is [enval and sb 5
), is (envb], sa*sb is [envab], where envab is the list of all N
e distinct bindings calculated by ~
; (CONS v v¥*sa*sb) ;f
where v is defined in enva or in ernvb (or both). i
An. environment env may be taken as a description not ornly of 5;
- [env] but also of the iterate of [env]. The itera.e s~ cf a e
- substitution s is the "limit" of the series -
- s, s*s, s¥*g*s, ... - e
. To find the image x*s~ of an expression x under the iterate of s,
: we repeatedly apply s to x until no further charges occur. That S
" ‘is, x*s” is the first expression in the series -
- X, x*s, x¥s¥s, x¥*s¥s¥s, ...
which is the same as its predecessor. It turns out that if s 1is L
- (env] then x*s~ is (RECREAL x env). 1If s is [env] then s~ is o
. denoted by {env}. So we have o
x*{env] = (REAL x env) ' o
) x*{erv} = (RECREAL x env)
: 3
-
-2-12 -
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Now in terms of substitution mappings, a unifier of two
expressions expa and expb is a substitution s which maps expa and
expb onto the same expression: .

expa¥*s = expb¥*s

and a most general unifier of expa and expb is a wunifier u of
expa and expb with the property that

s = u¥s
for all unifiers s of expa and expb.

Thus if u is an mgu of expa and expb and s is any unifier of expa
and expb we have

expats = expa*u¥*s = expb*u¥*s = expb¥s
and _
expa*u = expb*u

so that the common expressiorn onto which s maps expa and expb is
obtairnable by applying s to the common expression onto which u
maps expa and expb. The substitution {(UNIFY expa expb env)} is
the mgu of the two expressions expa*{env} and expb*{env}. Thus
UNIFY is given the two expressions to be unified in an indirect
way.

2.12 IMPLICIT EXPRESSIONS

The way that the two expressions expa*{env} and expb*{ernv} are
given to the UNIFY algorithm is indirect, in "unassembled" form.
This idea of working with expressions not yet (or possibly never)
fully assembled is used extensively in our system. 1t makes for
computational .ecoriomy and also for increased intelligibility. We
think of the list (expa env) as an "implicit" way of giving the
expressiorn expa*{env}l. We say-that expa is the skeleton part,
and env the environment part, of the implicit expression
(expa env). For many purposes it is more convenient, as well as
more ecoriomical, to deal with such "implicit expressions" than
Wwith the actual expressions themselves. This is particularly the
case when (expa env) describes arn unprintable expression even
though both expa and env are printable - as in the example
previously mentioned whern expa is x and env is ((x . (0 . x))).
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2.13 INSTANCES

We often wish to consider, for some expression x, the various
expressions x*s, where s is some substitution. These are known
as the instarices of x. For example, the expressions

(Divides 17 85)
(Divides (Plus a b) (Times 3 ¢))

are both instances of the expression (Divides p-q) . The first
of them 1is in fact a ground instance, since it contains no
variables. 1In general we say that expressions which contain ro
variables are ground expressions: so a ground instance of x is
an instance of x which happens to be a ground expression.
Expressions which contain one or more variables are known as
patterns. We often think of a pattern as a way of representing
all of its instances.

2.14 VARIANTS

In the role of a representative of all its instances a pattern is
not unique. Other patterns - known as 1its variants - have
exactly the same instances. For example, the expressions
(Divides p q) (Divides x y)

have exactly the same instances. Each is a variant of the other.
Irn general a variant of an expression x is an instance x*s of x
under a substitution which maps variables onto variables in
orie -to-cne fashion. Such a substitution is called a variation,
and is the only kind of substitution which has an inverse. If
[env] 1is a variation then its inverse is [env'], where env' is
obtained from env by interchanging the head and tail of each of
its bindings. The compositions [env]*[env'] and [env']¥*[env] are
ther. both the identity substitution.

In view of the identity of the set of instances of an expression
with that of any variant of the expression, we often treat mutual
variants as merely different ways of writing the same thirng.
However, in some of the computations invelving patterns (such as
the unification computation) it is sometimes necessary to take
suitable variants of ore's data beforeharnd.

To see why this is so, consider the problem of finding a pattern
whose 1instarnces are exactly those which are instances of two
giver. expressions, expa and expb.
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For example, if expa and expb are the expressions
(Divides (Plus x y) 2z) (Divides x (Times x y))
then among their common instances are the expressions

(Divides (Plus 3 4) (Times (Plus 3 4) 5))
(Divides (Plus 0 0) (Times (Plus 0 0)(Exp x y)))

ard so orn. We car. get the first instance from expa by the
substitution

X =3,y =4, z = (Times (Plus 3 4) 5)
We can get it from expb by the substitution
x = (Plus 3 4), y =6
However, there 1is no single substitution s such that
expa¥*s = expb*s =z this common instarce. The difficulty is the
occurrence of the same variables in both expa and expb. If we
take a variant of expb which has no variables in common with
those of expa - say, the expression
(Divides p (Times p q))
which we shall call expc - then we can in fact find a pattern
whose instances are exactly those common to expa and expb. To do
this we need only compute the expression
(RECREAL expa (UNIFY expa expc ()))
or (which is the same)
(RECREAL expc (UNIFY expa expec ()))

which is the "most general common instance" of expa and expe -
and therefore also of expa and expb.

Now the envirorment (UNIFY expa expc ()) is
((p . (Plus x y)) (z . (Times p q)))
and so the required expression is
(Divides (Plus x y) (Times (Plus x y) q) )

Every expressior which is an instance both of expa and of expb is
an instarnce of this expression - and conversely. This example
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illustrates the way in which the unification computation solves X
the general problem of constructing a patterr whose instances are N
precisely those which two given patterns have in common. of j§:
course, when the two given patterns have no commen instances, no vis
such pattern exists. The UNIFY function detects all such cases ;f

by returring "IMPOSSIBLE" instead of an environment.
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CHAPTER 3
LOGIC PROGRAMMING IN GENERAL

Logic programming is a "declarative" computing technique in which
a program consists of one or more assertions. These assertions
are used by the processor as "axioms"™ from which to deduce
logical consequences.

Once such a set P of assertions has been installed, the processor
is ready to evaluate expressions of the form

the set of all xt, ..., xn such that C
which in traditional mathematical notation is written
{ x1, ..., xn | C}

Here, C is a senternice expressing a constraint which a tuple
(x1, ..., xn) must be proved to satisfy, by a chain of deductive
inference steps starting from P.

Such "set of" expressions are called queries. The result of
evaluating a query { x1,...,xn | C } is a set

{ a1, ..., Ak }

of answers Ai, each answer being a tuple (t1, ..., tn) for which
the processor can prove the sentence

C where x1 = t1 and ... and xn = tn

In logic programming no imperative constructs are used. The
course of events during a logic computation triggered by a query
Q is determined not by the programmer's control instructions (for
there are none) but by the machine's pursuit of those deductive
cornsequences of the program P which may yield answers to Q.

For example, the program might consist of the assertions stated
irn informal English irn figure 1. These are numbered for later
reference. Some of these seritences are "data" recording simple,
particular facts; others are "rules" invelving the wuse of
logical variables x, y, z.
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2.2

Drobny is a champion
Drobny is older than Rosewall
Rosewall is older than Goolagong
If x is older than y and y is older than z
then x is older than z
If x was born before y then x is older than y
Kelly is a child of Goolagong
If x is a child of y then y was born before x
Goolagong is female
Drobny is male
10 Rosewall is male
1 Rosewall is a champion
12 Goolagong is a champion
13 Connors is a champion
R 14 Borg is a champion
B 15 Cornrnors is male
R 16 Borg is male
) 17 Borg was born before Cornnors
. 18 Cornnors was born before Kelly
- 19 Kelly is female
g 20 Evert is a champion
21 Evert is female
22 Evert was borrn before Conrors

LS Y

L
o 0,

Woo~Novun EWNa

-
LR S

. FIGURE 1
f ‘A leogic programming system such as LOGIC 1is capable of
L constructing the set of all answers to a query about the "world"

described by these assertions. In supplying the answers to such
an a query it must in general deduce them from what it has been told
- (rather than merely look the answers up). For example, the
: query:

the set of all x such that x is male
ard x is a champion .
and x is older than Kelly

WL Yy

would evaluate to the set of answers

{Connors, Borg, Rosewall, Drobnyl.

That these persons are male and champions 1is explicitly given
amor.,g the assertions, but that each of them is older than Kelly
must be deduced. The deductions invelved can, if desired, be
examired by the user. For example, orne could request an
explarnation of the fourth answer and LOGIC would respond with a
‘ ratioriale analogous to the informal explaration shown in figure 2
- or. the following page.
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To show:

it is enough, by assertion 9,

to show:

But then
to show:
But then

to show:

But then
to show:
But then

to show:

But then
to show:
But ther
tec show:
But thern
to show:

But then
to show:

End of explaration. e
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Drobny is a male
Drobny is a champion
Drobrny is clder than Kelly

Drobry is a champiorn
Drobny is older than Kelly.

it is enough, by assertion 1,
Drobny is older than Kelly.

it is ernough, by assertion 4,
(there is a y:1 such that)
Drobny is older than y:1

y:1 is older than Kelly.

it is ernough, by assertion 2,
Rosewall is older tharn Kelly.
it is enough, by assertiorn 4,
(there is a y:2 such that)
Rosewall is older than y:2
y:2 is-older than Kelly.

it is enough, by assertion 3,
Goolagong is older than Kelly.
it is enough, by assertion 5,
Goolagceng was born before Kelly.
it is enough, by assertion 7,

Kelly is a child of Goolagong.

it is enough, by assertion 6
nothirng.

FIGURE 2 S
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Irr the LOGIC system implemented within LOGLISP, the 1larguage of
the queries, assertions and explarations is formalized ard
artificial. We shall shortly discuss the details of its design.
Meanwhile, note that an explanation is essentially a proof, which
proceeds in steps all of the same kind. At each step there is a
"constraint 1list" of simple propositions, all to be shown true.
Any variables 1in these propositions are considered to be
existentially quartified by quantifiers placed at the beginning
of the constraint 1ist, and the constraint 1list itself 1is
considered to be the conjunction of 1its members. The empty
constraint list (i.e. the empty conjunction) is by convention
true, so that if at some step the list has become empty, the
procof is complete - there is nothing left to show. In gereral,
each inference step consists of three stages:

(1) The selectiorn ¢f a proposition A from the constraint list and
cf an assertion from the knowledge base whose conclusion B
will unify with A.

(2) The replacement of A in the constraint 1list by the
cornstraints comprising the hypothesis (if any) of the
selected assertion.

(3) The application to the new constraint 1list of the mcst
general unifier of A and B.

The notion of wunification has been defined ornly for formal
expressions, however, and so to make this account precise we must
rrow recast it in terms of the formal la2~-guage of LOGIC. Let us
row survey this formal language.

3.1 PREDICATIONS

The basic unit of the formal language 1is the predication.
Predications are simple sentences of the subject-predicate form
in which the predicate is written first and the subject secord.
The predicate P may be any "proper identifier®" - that is, an
identifier which is a proper name. (Recall that, in LISP, an
identifier 1is an atom which is neither a numeral rnor a string).
The subject is a list of expressions called terms. Greound (i.e.
particular) terms are essentially noun-phrases which derote
things. A list (A1 ... An) of n ground terms derotes the n-tuple
of thirgs denoted respectively by the compornernt terms A1, ...,
An.

Predicates denote properties of tuples. (Properties of tuples
are oftern also called relations.) The intuitive mearing of a
grourd predication with predicate P and subject A 1is the

proposition that the tuple dernoted by A has the property deroted:
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by P. We write this formally as the list whose head 1is P and
whose tail is A.

Thus we might formally write:

Drobny is a champion as (Champion Drobny)

Drobrny is male as (Male Drobny)

Drobny is older than Kelly as (0lder Drobry Kelly)

Evert is female as (Female Evert)

Evert was born before Kelly as (Before Evert Kelly)

Kelly is a child of Goolagong as (Child Kelly Goolagcng)
3.2 TERMS

A term may be either a variable, or a proper name, or a
cornstructicr. Cornstructions have an operator-operand form. The
operator (which may be any proper identifier) denotes an
operation, and the operand may be any list of terms. When the
- construction is a ground expression, its operand derotes a tuple
of things, in just the same way as does the subject of a ground
predication. Constructions are indeed syntactically
indistinguishable from predications, and from LISP applications.
Their commor, syntactic form reflects arn underlying unity in their
semarntics as applicative -expressions. We do not, however,
require that predications and terms be meaningful LISP
applications. Each ground construction or ground predication can
be understood as representing the result of applying some
functiorn to some argument(s). In the case of a predication this
means construing a property or relation as a truth function,
ramely a function which yields as its result one or other of the
two truth values, TRUE, FALSE (T, NIL in LISP). We write the
construction with operator F and operand (A1 ... An) as the list

(F A1 ... An)
whose head is F and whose tail-is (A1 ... An).
Ground predications, then, express facts and denote truth values.
Grournd terms express applicative descriptions and denote things.
Both ground terms and ground predications have the same simple,

systematic deriotatiorial semantics based on the applicative
principle.
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3.3 WORLDS

A world is a collection of facts - "everything that is the case"
irn  that world. In logic programming a world is represernted by a
collection of ground predications.

Given a collection W of ground predications as such a world, we
can ask for what substitutions, if any, a given predication Q
(whether ground or not) is "true in W".

If Q is a ground predication, this is simply the question whether
Q is a member of W. If Q is in W, the answer is then: the
identity substitution.

If Q is a predication pattern, however, this 1is net quite so
simple a question, and w2 construe it to mear: for which
substitution operations s is the predication Q¥*s in W?

For example, the world specified by the assertions in our earlier
example is the set shown in figure 3.

With this world as W, if we ask what are the substitutions for
which the predication

(Male x)

is true in W, we get four "solutions", namely:

X = Drobny

X = Rosewall
X = Borg

X = Cornnors

there being four ground instances of "(Male x)" in W, namely
those corresponding to these four substitutions. More generally
we can ask a question involving a conjunction of predications.




............................................

(Male Drobny) (Female Goolagong) (Champion Drobny)

(Male Rosewall) (Female Evert) (Champion Rosewall)
(Male Borg) (Female Kelly) (Champion Borg)
(Male Cornnors) (Champion Connors)
(Champion Goolagong)
) (Champion Evert)

(Older Drobny Rosewall) o
(Older Drobny Goolagorng) (Before Borg Connors) s
(Older Drobny Kelly) (Before Corrors Kelly) S
(Dlder Rosewall Goolagong) (Before Evert Connors) TSN
(Older Rosewall Kelly) (Before Goolagong Kelly) Ny
(0lder Goolagorng Kelly) Lazla]
(Older Borg Cornnors) R
(J1der Borg Kelly) ]
(Dlder Evert Connors) (Child Kelly Goolagcng) S
(0Older Evert Kelly) : N
(Older Connors Kelly) o
-'.f;{
FIGURE 3 T
If Q1, ..., Qu are predications, we can ask of a world W e
e
for what substitutions s AR |

is (Q1 & ... & Qn)*s true in W?
or mcre briefly:
what substitutions satisfy (Q1 & ... & Qn) in W?

For example in the W of our example the question

what substitutions satisfy
((Male x) & (Champion x) & (Older x Rosewall))
in W? :
has the arnswer T
x = Drobny

since under this (but no other) substitution the conjunction
becomes true in W.

3.4 QUERIES o
Irn LOGIC we write the query ?gﬂ

the set of all X such that Q1 and ... and Qn SRy
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formally as an expression of the form
(ALL X Q1 ... Qn) .

in which Q1 ... Qn are predications and X 1is an expression
called the answer template of the query. The answer template may
be any variable, any proper name, or any list of terms. The list
Q = (Qt ... Qn) is the constraint list of the query.

For any world W, such a query has a set of answers, which 1is
represented as a 1list of expressions. Each expression in this
"answer list" is the instance of the answer template under a
substitution which satisfies the constraint 1list Q, that is,
which transforms the conjunction (Q1 & ... & Qn) into one which
is true in W. Thus the query

(ALL x (Male x)
(Champion x)
(Older x Rosewall))
has the answer list (in the world of our example)
(Drobny)

since the substitution x = Drobny is the only ore which satisfies
the givern constraint, while the query

(ALL z (Female z) (Older z Drobny))
has the empty list

O

as its answer list since there are no substitutions which satisfy
the constraint '

((Female z) (Older z Drobny))

3.5 SPECIFYING A WORLD BY ASSERTIONS

It is not expected that one should have to specify a world by
explicitly 1listing, as in figure 13, all of its predications
(although this would 1ir principle be possible for a finite
world). A world is specified indirectly, by giving a collection
of clauses. A clause is a sentence with two main parts: a
conclusion, which is a predication, and a hypothesis, which is a
list of predications. The hypothesis of a <clause can be the
empty list, in which case the clause 1is said to be an
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unconditiornal clause, whereas a clause whose hypothesis 1is
nonempty is said to be a conditional clause. An unconditional
clause whose conclusion is B is asserted by the command

(ASSERT B)

while a conditional clause with conclusion B and hypothesis
(A1 ... An) is asserted by the command

(ASSERT B 4= A1 & ... & An)

(the arrow and the ampersands are optional "syntactic sugar" arnd
may be omitted).

A collection of clauses is called a knowledge Dbase. Arny such
collection determines a world.

An uncornditional ground clause (i.e. a datum) asserted Dy
(ASSERT B) intuitively says that B is one of the facts in the
world being described - "B is true". Recall that any clause
which 1is not a datum is a rule. A rule asserted by the command
(ASSERT B <- A1 & ... & An) says that B is one of the facts Iin
the world being described provided that A1,...,An all are - "if
A1 and ... and An are true then B is true". A rule which is a
clause pattern - a clause containing one or more variables - has
the same descriptive effect as would the set of all its ground
instances. In general this means that a clause pattern is in
effect a universally quantified statement. If its variables are
x1,...,xk (say) then the clause asserted by
(ASSERT B <- A1 & ... & An) can be read

"for all x1, ..., xk: if A1 and ... and An then B"

Indeed, if some of the variables among the xi (say, z1,...,2p) do
rot occur in the canclusion B while the rest (say, y1,...,yt) do,
the clause asserted by (ASSERT B <- A1 & ... & An) may be mcre
intuitively (but equivalently) read

"for all y1, ..., yt:
if there exist z1, ..., zp such that A1l and ... and An
ther. B"

In the example of figure 1 there are three such clause patterns.
All the other clauses in figure 1 are data. Figure 4 shows the
.series of commards which would set up the knowledge base of
figure 1, numbered to correspond with figure 1. The numbers
would rnot be typed when erntering these commands into the
computer.,
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(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT
(ASSERT

(Champion Drobny))

(Older Drobny Rosewall))
(Older Rosewall Goolagong))
(Older x z) <- (Older x y) & (Older y z))
(Older x y) <~ (Before x y))
(Child Xelly Goolagong))
(Before y x) <- (Child x y))
(Female Goolagong))

(Male Drobny))

(Male Rosewall))

(Champion Rosewall))
(Champion Goolagong))
(Champion Connors))
(Champiorn Borg))

(Male Cornors))

(Male Borg))

(Before Borg .Connors))
(Before Cornnors Kelly))
(Female Kelly))

(Champion Evert))

(Female Evert))

(Before Evert Cornrors))

FIGURE 4

The knowledge base set up by the commands of figure 4 completely

determines

the

world of figure 3, according to the following

general definition.

DEFINITION

The world determined by a knowledge base D is
the smallest set W of ground predications which
satisfies the two conditions:

(1)

(2)

if D corntains the datum G,
thern G is in W

if G is a ground instance of a rule in D
and the predications in the hypothesis
of G are all in W, then the conclusion
of G is in W.

END OF DEFINITION
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In effect, this definition describes a process which infers W
from D by a series of wholesale inference steps. First, by (1),
the process constructs outright the set W0, which contains just
those ground predications which are conclusions of data in D.
Then by (2), in general, having constructed the set Wn, this
process constructs Wn+1 by adding to Wn the conclusion of every
ground instance G of every rule in D, provided that every
predicatiorr in the hypothesis of G is in Wn. Thus the process
coristructs a series of bigger and bigger worlds

WO, W1, ..., Wn,

which either ends (with a world that is the same as its
predecessor) or else contirues indefirnitely. The world W is then
the "1limit" of this series, i.e., the union of all of the sets in
it , i.e. the smallest set which includes them all.

Thus the world W is determined by a knowledge base D through a
"bottom up" process of reasoning.

Giver. such a D, we wish to be able to answer queries about 1its

world W. 1In doing so we wish to avoid the brute force method of

gerierating W bottom up and searching it. It 1is much . better,

given a query about W, to reason "top down" about W's contents

without actually constructing W. This turns out to be possible’
through the wuse of unification, built into a special inference

prirciple called LUSH resolution. This inference principle can

be applied very efficiently through the wuse of implicit

expressions, as we shall now see.

3.6 IMPLICIT CONSTRAINTS AND THEIR SOLUTIONS

L,
"'
v
b
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By an implicit constraint we mean a list (q env) in which env is :HA
an  environment and q is a list of predications. The expréession e
q*{erv} is the corresponding explicit constraint . Now let D be o

'y -

ny

a knowledge base and 1let W be the world described by D. We
deriote by (SOL q env D) the set of "solutions of (q env) in D" -
that is, the set of environments xenv which are extensions of env
with the property that all of the predications in q¥%*{xenv} are
true in W.

I
H

We wish tc calculate (SOL q env D) from (q env) and D.

There are two cases to consider. The first case 1is when q is ..
- empty. Then (SOL q env D) is simply the set whose only member is AN
; ernv. Such a (q env) is said to be solved.
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p The secord case is when (q env) is unsolved, i.e., when q 1is
g ronempty.
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For this case we use LUSH resolution to represent the desired set
as the union of one or more simpler sets.

3.7 LUSH RESOLUTION

For any unsolved constraint (q env), any krnowledge base D, the
set

(RES q env D)
is a set (possibly empty) of implicit constraints called the
D -resolvents of (q env). The interest of this set lies irn the
fact that we have:

(SOL q env D) = (SOL q1 ernv1 D) U ... U (SOL qn envn D)

where (q1 envil), ..., (gn envn) are the D-resolvents (if any) of
). (q env). In particular it may be that there are no D-resolvents
- of (q env). This then means that there are no solutions of
(q env) in D.

3.8 SEPARATION OF VARIABLES

-

k% The computatiorn of (RES q env D) requires the determination of a
% variant D' of the knowledge base D. D' must have the property
that rnore of its clauses contains a variable which occurs in
(q env). This "standardizing apart” of the variables in the
constraint from those in the <clauses 1is necessary for the
theoretical completeress of the resolution transformation. 1In
the current implementation D' 1is selected automatically arnd
represented implicitly ard economically by techniques explained
in [Robinson -Sibert 19847].

ey Yyl

3.9 DEFINITION OF (RES Q ENV D)

The set (RES q env D) is the set of all implicit
constraints calculated as

O Laedve 2
. L ]
s e Te e e

(CONS (APPEND h (CDR q)) (UNIFY (CAR q) c env))

>

for which h is the hypothesis of a clause in
D' whose corclusion ¢ unifies with (CAR q) in env.

The decision to unify (CAR q) with ¢ is entirely arbitrary; orne
could -equally well choose some other predication of q. Although
a well-informed choice might offer substantial benefits to the
overall computatiorn, we know of no economical way to make such a
choice, so the present implementation uses the simplest method

- 3-12 -
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h available.

3.9.1 The Computation Of (RES Q Env D) N

On the face of it, the entire knowledge base D must be searched QQ
in order to extract from it every clause whose conclusion ¢ will s
unify in env with the predication p = (CAR q).

Fortunately, this is not necessary. For large D the cost would fl
be prohibitive. S

In fact it is possible to store D in such a way that only a s
relatively small subset of D need be searched. Note, first, that .
the predicate of ¢ must be the same as that of p if ¢ is to unify o
with p in env. Accordirgly, ornly those clauses need be .
considered whose conclusions satisfy this condition, and it is IR
straightforward to partition D into subsets of clauses ("logical s
procedures”) whose conclusions have the same predicate. Each e
logical procedure can be stored on the property list of the .
predicate of its conclusion, and thus be retrievable in time S
essentially 1irndependent of the size of D. The data of each o
procedure car be further indexed on the basis of the various -
proper identifiers which occur in their conclusions. This is et
highly advarntageous, since in order that a datum ¢ unify with p
in env, ¢ must in fact contain every proper idertifier which .
occurs in p*{env}. This observation forms the basis of a quite AN
selective retrieval technique. In practice it is found that S
large procedures consist mairly, if not entirely, of data, so R
that the retrieval technique frequently applies just when it will yd
do the most gocd. T

3.10 THE DEDUCTION CYCLE

The heart of the LOGIC system is the basic deduction cycle, which :
computes the set (SOL q env D) for a given implicit constraint e
(q env) and a given knowledge base D. $

The computatior. of (SOL q env D) consists of the development of Sy
two sets of implicit constraints, SOLVED and WAITING. Initially, i
.SOLVED is empty and WAITING contains the single constraint o
(q env). These two sets are then subjected to an iterative -
transformation which corresponds intuitively to the construction et
of a "deduction tree" whose nodes are implicit constraints. The -
root of this ¢tree 1is the 1implicit constraint (q env). The y
successors (if any) of an unsolved node (x e) are the
D-resolverts of (x e). The tips of the deduction tree are the

solved nodes (if any) and the unsolved nodes (if any) which have N
ro D-resolvents. The output of the deduction cycle is the set of s
environmert parts of the solved nodes of the tree.

- 3-13 =
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As the tree develops, the solved nodes are collected into the set
SOLVED, and the nodes which have not yet been processed are kept
in the set WAITING. Thus the tree construction is finished when
WAITING finally becomes empty.
The deductiorn cycle is the following three-step algorithm:
IN: 1let SOLVED be the empty set and
let WAITING be the set containing only (q env)
RUN: while WAITING is nonempty
do 1 remove some constraint (x e) from WAITING
2 if (x e) is solved
then add (x e) to SOLVED
else add the D-resolvents of (x e) to WAITING

OUT: return the set of environment parts of SOLVED

In general (SOL q env D) is computed by executing the deduction
cycle and taking its output as the required set.

Several points are worth noting about the deduction cycle.

o
L
® .
M)
-

3.10.1 Failure Nodes: Immediate And Ultimate

P N

0
g

Ar. unsolved rnode which has no solved rodes as descendants is =
. known as a "failure". There are two kinds of failure. An -
,R immediate failure has no descerdarnts at all - because it has no K

D-resolvents. An ultimate failure has one or more successors,
but they too are failures - the entire subtree rooted in an
ultimate failure consists of nothing but failures, and its tips
are all immediate failures. It 1is an interesting problem to
desigr implementations of the deduction cycle 1in which the
subtrees rooted in wultimate failures are kept as small as
possible without undue extra computation. Ideally, all failures N
would be immediate and would be recognised as such in constant R
(and short) time. S

2y
¢vl".l,.

%7

3.10.2 Norndeterminacy Of Deduction Cycle

The choice called for in step 1 of the deduction cycle introduces
an element of nondetermirnacy. The choice can be made uniformly
and cheaply according to a criteriorn which is built into the
system desigr. In the PROLOG systems, the selectior in step 1 is

....................
------------------
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in effect ruled by a very simple criterion - the first constraint L
(x e) 1is selected from a WAITING which is represented in effact 724
as a list. [We have to say "in effect" because in fact the ey
PROLOG systems handle WAITING dynamically in a backtrack mcde of S
working which never explicitly realises the whole list at once.]

Tne selection of the rnode (x e) in step 1 can (as in the PROLOG
systems) be made according to the "depth first" criterion in
which the younger members of WAITING are chosen before the older
members. This may sometimes lead to the "depth first runaway"
situation in which one or more nodes in WAITING are never
selected because they are never the youngest. 1In practice other
considerations (see the discussion below of the deduction window)
preclude an infinite depth first runaway, but even the finite
versions of it which are allowed by the deduction window may be
thought undesirable. Avoidance of depth first runaway can be
ecoriomically achieved by letting the selection in step 1 depenrd
upori a quartity which can be computed ornce for all for each rnode
wher: it is first generated. This quantity is the "solutiorn cost"
of the node.

3.10.3 Definition Of Solution Cost

The solution cost of a rnode (x e) is simply a heuristic estimate
of the "cost" (in arbitrary units) of obtaining a solved
descendent of (x e). In LOGIC we estimate this cost as the sum
of (LENGTH x) and the depth of (x e), which is number of nodes

preceding (x e) orn 1its branch of the deduction tree. The
simplest heuristically guided search results from selecting in
step 1 a node of WAITING having minimum solution cost. Our

actual search technique combines this method with a limited
depth -first search; the details are explained in chapter 9.

3.11 THE DEDUCTION WINDOW

I.. .'u /. (n '.- ." "l

Sirnce in general the deduction tree can be infinite, it |is
possible that WAITING should always be ronempty, and hence it is
: recessary irn these cases to truncate the deduction c¢ycle and
- accept the resultirg (perhaps incomplete) set of solutions as an
g approximation to the full set (which may be infinite).

It is desirable to manage this truncation gracefully and to
provide the LOGIC user with some control over its details. This
is the reason for the deduction window.

The deductior window is a collection of parameters which can be
set in various ways by the user and which have default values
which are used in the absence of user-provided alternatives.
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The deduction window is discussed in more detail in Chapter 9.

Each parameter in the deduction window is used as arn upper bound
ofi an associated quantity measuring some feature of the deduction
cycle. These quantities are TREESIZE, NODESIZE, ASSERTIONS,
RULES and DATA.

At a given moment 1in the execution of the deduction cycle
TREESIZE 1is the total number of nodes which have so far been
generated. The RUN 1lcop 1is terminated as soon as TREESIZE
exceeds the bound set for it in the deduction window.

The implicit constraint (x e) selected in step 1 ¢f the body of
the RUN 1loop 1is treated as an immediate failure (hence dropped
from WAITING without progeny) if NODESIZE(x e), ASSERTIONS(x e),
RULES(x e) and DATA(x e) are not all withir the bounds specified
for them in the deduction window.

NODESIZE(x e) is (LENGTH x), the rnumber of predications in the
constraint list X of (x e).

ASSERTIONS(x e) is the number of nodes which precede (x e) orn the o
branch of -the deduction tree of which it is the current tip. o
This number is the same as the number of clauses invoked in 1its
deductiorn. It 1is 0 for the initial node, and is 1 greater than
that of its predecessor for each derived node.

RULES(x e) is a quantity similar to ASSERTIONS(x e), but reflects
the classification of clauses into rules and data.

:
"l

RULES(x @) is the number of times a rule was 1invoked in the
deduction of (x e), and

I‘.
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DATA(x e) is the number of times a datum was invoked in 1its
deduction. We obviously have, for each (x e) in WAITING, that:

et
3 3

DATA(x e) + RULES(x e) = ASSERTIONS(x e)

Thus the deduction window serves as a truncation device which
ernsures that each particular execution of the deduction cycle
will terminate. It provides the user with both a global
(TREESIZE) and a 1local (NODESIZE, ASSERTIONS, RULES ard DATA)
cutoff control. All the bounds in the deduction window are set .
to system defined default values in the absence of user-defined RO
alterrnatives.
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CHAPTER U4
LOGIC PROGRAMMING IN LISP

LOGIC is related to LISP in two different ways.

First, it is implemented in LISP - that 1is, ¢the LOGIC system
consists of a collection of LISP functions which live in a LISP
workspace and provide all the 1logic programming facilities
described ir this marnual.

Secornd, LOGIC in a certain sense contains LISP. This means that
the LOGIC programmer car invecke LISP from within LOGIC calls, by
incorporating, in clauses and queries, pieces of text which can
be handed over to LISP for processing. To understand how this
works we reed to discuss the notion of LISP-reduction.

4.1 LISP-REDUCTION OF LOGIC EXPRESSIONS

The expressions encountered by the LOGIC "processor" during the
deduction cycle are terms and predications arising ultimately
from the constraint list of some query and from the clauses used
in cor.structing resolvents. However, some of these LOGIC
expressions may also admit an interpretation as LISP programmirng
constructs. In that case they may have a LISP value, or if not
they may be capable of some LISP-reduction.

For example, the expression

(+ 3 (* 5 4))
- is both a LOGIC term and a LISP construct. In the 1latter role,
b e it 1is equivalent to, and can be replaced by, its "value", namely
o the rnumeral
s ,
- withir any ordinary expression e to produce an expression which
- has the same meaning as e. Both expressions denote the number
0 twenty-three,

Such replacemerts of expressions by others which are their values
are basic equivalence-preserving transformations of ordinary
computation as normally conceived. The presence of free
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variables does not irvalidate this idea. Thus evern though "a"
has no LISP value, the LISP construct

(+ a (* 5 14))

can be reduced; it is LISP-equivalent to and can be replaced by
the simpler expression

(+ a 20)

even though the latter is not its "value" as in the first case.
In general, an expression may well "reduce" to another expression
ever. when it will not, in the wusual sense, "evaluate" ¢to a
"value",

We refer to this process of replacing a LOGIC expression by ore
which 1is LISP-equivalent to it as "LISP-reduction”, or simply as
"reduction" when this will rnot cause confusion. It can be done
to any expression at any time and is always defined (but may be
merely the identity transformation). When an expression reduces
only trivially, i.e., to itself, we say that it is "reduced".

4.2 LISP DEFINITIONS

Certain definitions are built into LISP itself and come with the
system whenever one sets up a LISP workspace. That is, certain
identifiers are defined as denoting built-in LISP functions (CAR,
CDR, PLUS, etc.) or as the keywords of built-in special forms
(COND, SETQ, PROGN, etc.).

In additiorn to these built-in LISP definitions, a LISP workspace
may contain further definitions made by the user. A collectiorn
of such user-coirned LISP definitions indeed constitutes a LISP
program.

4.3 REDUCTIONS AND VALUES.

The joint effect of the system- and user-imposed definitions in a
LISP workspace is to determine a notion of "reduction".

Every LISP construct is reducible, if only trivially (to itself).
The reduction process produces (intuitively) a "reduction series"

co, ..., Cn

of LISP expressions, in which CO is C itself, and Ci+1 comes from
Ci by. the replacement of some subexpression R by ar equivalent
expression S. We think of this as the invocation of the "rewrite
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rule"
R =38
as for example the rule

(+ 3 84) =7. N

We say that Ci is "rewritable", and "rewrites to" Ci+1. Thus a X
reduction series cornsists of one or more expressions the last of DN
which (if the series terminates) is not rewritable, but each
- earlier expression (if there are two or more) rewrites to the
“ rnext.

It is in the nature of the concept of reduction that a reduction
series is continued as far as possible, i.e., until an expression
Cn is reached which 1is not rewritable. Such unrewritable
expressions are often said to be "irn normal form" or "rormal", R
As we said above, usage also sanctions calling them "reduced".

[There are expressions which canrot be reduced to rnormal form, o
because it 1is always possible to apply further rewrite rules.
For example, if the only rule is

x = (F x)
ther. the reductior’ series for x is
x, (F x), (F (F x)), ...,
and so x does not have a normal form.]
Thus reductiorn is always defined. It often coincides with
evaluation - that is, the value of e and the reduction of e are

ofter. identical. But this is not always the case and the matter
requires some care. :

For example, the quotation ' Lfl
'(This is an S-expression) L
has as its value the expression |
(This is an S-expression) S

but it is reduced (as are all quotations), that is, it is its own N
reductiorn.

.

The expression
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(* (+ 3 4) (/7 5 x))

has no value (sirnce its second argument expression contains an
occurrence of a variable) but reduces to the expression

(* 7 (/7 5 x))

These two examples show that although an expression always has a
reduction it may or may not have a value, and that ever when it
does have a value, this may or may not be the same as 1its
reduction.

The following two propositions hold in gerneral:

A. If ann expression has a value which is
a proper rame, its reduction is that proper name.

B. If ar expression e has a value v which is
not atomic, or is a variable, the reduction of e is
the expression (QUOTE v), rather than the expression v.

Proposition B is at first a somewhat surprising feature of the
reduction rnotion. A little reflection soon shows 1its
naturalness.

By definition, the reduction of an expression is always a reduced
expression. Moreover, arn expression e must be LISP-equivalernt to
the reduction of e - and this means that if e has the value v so
must the reduction of e. These two considerations together
require that the reduction of e be (QUOTE v) - the value of which

is v - sirnce the expression v might 1itself have a value w
distinet from v. Only when v is a proper name is w 1identical
with v.

Note thaf one effect of these definitions is to establish a
conventicn for quoting atoms which differs somewhat from that
used in LISP. As arn example, the LOGIC expression
(MEMBER Borg '(Connors Borg Evert))
has value (Borg Evert), being analogous to the LISP expression
(MEMBER 'Borg '(Connors Borg Evert))

The utility of the LOGIC convention becomes apparent whern cre
connsiders a predication such as

(Older Drobny Rosewall)




which, had LOGIC followed the LISP cornvention, would have to be
written

(Older (QUOTE Drobny) (QUOTE Rosewall)) ,
a rather less palatable form.
4.4 OBJECTS IN LOGLISP

Before proceeding into a detailed exposition of the interaction
betweern LOGIC and LISP, we review the classification of LISP
objects imposed by LOGIC. Recall that an object is either atomic
or composite. Atoms are identifiers, strings or rumerals,
Identifiers beginning with a lower case letter are variables, all
cthers are proper iderntifiers. Proper identifiers, strings and
rumerals cornstitute the c¢lass of proper rames. For technical
reasorns, we prohibit the use of the character """ in variables,
except for certain "subscripted variables" created by LOGIC,
which will be explained later.

4.5 REDUETION AND EVALUATION

Gerierally speaking, the "applicative™ expression
e = (f el ... eN) has a value if f is the r.ame of a function
(defired irn LISP) and el, ..., en have values. for which f is
defired. In this case the reduction of e is the value of e,
quoted when recessary as explairned above. [The value of
(f e1 ... eN) 1is obtairned by APPLYirg f to the values of the
expressions ei].

The reduction of an applicative expression which does not have a
value 1is in general obtaired by replacing occurrences of its
immediate subexpressions by occurrences of their reductiorns.

We proceed now to a precise definition of the notion of
reduction.

We shall speak of expressions as though they were explicitly
represented. In fact, in the LOGLISP system we compute the
reduction of an expression directly from its implicit
representation, as economically as we can. The resulting
reductiorn is also represented implicitly, with the same
environment part.
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4.5.1

Expressions And Their Values

Excepting certain special forms which are discussed below, we say
that the expression e = (f 21 ... eN) has value v if
(AND (SYMBOLP f) (FBOUNDP f)), the contents of f's function cell
(fe) 1is a lambda expression, el, ..., eN have values, arnd v is
the result of APPLYing fc to the values of et1, ..., eN.

NOTE: Currently, LOGLISP will rnot properly evaluate expressiorns
of the form (f el ... eN) where f is a user defirned special form.
(A user defired special form is a function whose formal arglist
contains one or more of the keywords &QUOTE, &REST, &KEYWORD, or
&EVAL.)

The value of a proper name is the proper name itself.

A variable has no value.

4.5.2 Expressions And Their Reductions

Again with the exception of certain special forms, ar expression
e of the form (f e1 ... eN) has the reduction r if

(a) e has the value v, in which case r is v, if v is a proper
rname; otherwise r is (QUOTE v)

or e has no value, but

(b) f is a proper identifier, in which case r is
(f e1' ... eN'), where ei' denotes the reduction of ei.

"(c) otherwise, r is e itself.

Note that atoms, whether variables or rnot, are reduced.

Note further that every expression (f el ... eN) in which f is a
- variable, a number, or, indeed, anything except a proper
identifier, has no value, and is reduced. This may be justified
intuitively on the ground that one doesn't know what to do in
such a case. We could, in fact, have extended the notiorn of
reduction to allow f to be a lambda expression, say, but we have
rot chosen not to do so. Such an extensior would have
complicated matters sigrificantly with no great advantage in
flexibility.
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4.5.3 Side-effects ot

Reducing an expression which has a value and whose (LISP)
evaluation produces one or more side effects causes those
effects. Note that the reduction of such an expression is either
a proper rame or a quotation -- an expression which has the same
value but whose -evaluation produces no side effects. To
illustrate, reducing

(SETQ A (+ (SETQ B (* 2 3)) x)
yields the expression
(SETQ A (+ 5 x))

having assigred % as the (LISP) value of the identifier B. If
this expression is later instantiated to '

(SETQ A (+ 6 (* 4 5)))

ard that expression reduced, the reduction is 26, with the effect
of assigring 26 to the identifier A. Observe that such effects
may be separated in time, owing to the non-determirnistic nature
of the search performed by LOGIC. The computation of the
reduction of any ore expressiorn 1is, on the other hand, an
"atomie" act within this search, no matter how complex the
expressicn, and any effects will occur in the order one would
expect in LISP evaluation.

Run-time error messages are a particular kind of side-effect
which may arise while reducing an expression. When they arise,
these are produced by the LISP interpreter, and may be dealt with
in the usual ways provided by LISP, as well as by some additional
mear,s provided with LOGLISP and described in Chapter 12. As an
example, an attempt to reduce

(+ A 2)

causes the computation to be broken with a "NON-NUMERIC ARGUMENT"
message, since the proper name A has itself as value, and +
requires that its. argument values be numbers. One might suppose
that such ar expression should be regarded as having no value,
ard herce reducing to itself, but to adopt such a policy 1in the
present implementation would be quite impractical.
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4.6 SPECIAL FORMS

In addition to the expressions just considered there are several
special forms which require separate treatment. Most of these
are special forms of LISP.

Since the syntax of special forms 1is the same as that of
applicative forms whose function designator is atomic, LISP users
ofter. slur over the distinction. It is, however, most important
to remember that the LISP value of a special form is NOT obtained
by "applying the function denoted by 1its head to the object
derroted by 1its tail" - that being how the LISP value of an
APPLICATIVE form is obtained.

There is a special process set up for obtaining the LISP value cof
each special form, ¢to which a LISP. interpreter switches on
recogr.izing the keyword (COND, SETQ, PROGN, QUOTE, etc.) of that
special form.

This little homily would nrot be necessary if the syntax of
applicative forms were desigred in the same way, and applicative
forms were tagged as such by a keyword, say, APP. The high
frequency of applicative forms in programs would make such a
cornvention burdensome. No one wants to have to write

_(APP + (APP * 3 4) (APP SIN 30))

instead of
(+ (* 3 4) (SIN 30))

4.6.1 Macros
Let (FSYMEVAL f) be a macro definition fm. The éxpression
e = (f el ... eN) is first reduced to the macro expansion of e as
defired by fm. The expression e has a value only if the 'macro
expar.sion of e has a value,
Some examples: (irn the context of the following macro definition)
(DEFMACRO M (X Y) “(+ (* ,X ,X) ,Y))
(M 2 x) is reduced to (+ 4 x).

(M (+ 1 2) 5) evaluates to 14,
(M (+ 1 %) (+ 1 2)) reduces to (+ (* (+ 1 x) (+ 1 x)) 3).

- 4.8 -
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4.6.2 Quotations
(QUOTE v) or (FUNCTION v)
Each of these forms is reduced.

Each has the value v.

Each of these forms 1is "immune" ¢to instantiation, that |is,
(QUOTE v)*s is (QUOTE v), for any substitutiorn s, even though vis
may be different from v.

(F-L args . exprs)

This form is reduced, and, like the QUOTE and FUNCTION forms, it
is immune to instantiation. See [Meehan 1979, p.57]1 for details
orn the use of F-L in LISP.

4.6.3 Listings

(LIST e1 ... eN)

(LIST) has the reduction NIL.

If e1l, ..., eN have the values v1, ..., vN then (LIST el ... eN)
has the reduction (QUOTE (vl ... vn)).

If rot all of the ei's have values, then (LIST el ... eN) has the
reduction (LIST e1' ... eN'), where ei' denotes the reduction of
ei.

This is just what one one would expect.

4.6.4 Conjunctions
2 (AND e1 ... eN)
(AND) reduces to T.

(AND e) reduces to the reduction of e.

T

: If e1 has the value NIL thern (AND el ... eN) reduces to NIL.

& If e1 has a non-NIL value then (AND el ... eN) reduces to the ffi
reduction of (AND e2 ... eN). )
If el has no value then  (AND el ... eN) reduces to 3}#
(AND e1' e2 ... ern), el1' being the reduction of el. {%ﬁ

' R
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All of this corresponds to LISP usage, the conjuncts being taken
in order and only as far as necessary to determire the result.

4.6.5 Disjunctions
(OR e1 ... eN)
(OR) reduces to NIL.

(OR e) reduces to the reduction of e.

If the value of e1 is non-NIL then (OR el ... eN) reduces to the
reduction of e1.

If el has the wvalue NIL then (OR e1 ... eN) reduces to the
reduction of (OR e2 ... eN). »

If el has nLo value then (OR el ... eN) reduces to
(OR e1' e2 ... en), el' being the reduction of e1.

All of this corresponds to LISP usage, the disjuncts being taken
in order and only as far as necessary to determine the result.

Y

¢

.
y s "
*a¥sle

. &
Ll

 4.6.6 Conditionals

P
1“ LAy

(COND g1 ... qN)
(COND) reduces to NIL.
If g1 is (e0 ... eM) then:

if e0 has no value then (COND - qt1 ... gN) reduces to
(COND (e0' ... eM) ... gqN), where e0' is the reduction of e0;

if e0 has the non-NIL value v, then (COND gq1 ... gN) reduces to
the reduction of (PROGN (QUOTE v) el ... eM) {rote that
(QUOTE v), rather than simply v, is needed here since it is
possible that M = 0];

if e0 has the value NIL then (COND q1 ... gN) reduces to the
reducticrn of (COND q2... gN).

All of this conforms to customary LISP practice, since PROGN
mimics the sequential evaluation of the -expressions in a
conditionrnal "arm".
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4.6.7 Sequerntial Compositions

(PROGN e1 ... elN)
(PROGN) reduces to NIL.
(PROGN e) reduces to the reduction of e.

If e1 has no value ¢then (PROGN el ... eN) reduces ¢to the
reduction of (PROGN e1' e2 ... eN), e1' being the reduction of
el.

If el has a value then (PROGN e1 ... eN) reduces to the reduction
of (PROGN e2 ... eN), and the side-effect, if any, of evaluating
el occurs.

(PROG1 el ... eN)
(PROG1) reduces to itself.
(PROG1 e) reduces to the reduction of e.

If el has no value then (PROG1 e1 ... eN) reduces to
(PROG1 e1' €2 ... eN), el1' being the reduction of el.

If e1 has the value v then (PROG1 el ... eN) reduces to the
reduction of (PROGN e2 ... eN (QUOTE v)), and the side-effect, if
any, of evaluating el occurs.

(PROG loc s1 ... sN)
PROGs are always reduced.

There is no reasonable way to carry out a reduction of a PROG
analogous to the reduction of PROG1 or PROGN expressions, and the
rnecessity of assignment to the 1local identifiers of the PROG
would lead to 1limited wutility of such a construct, even if we
were to define some notion of reducibility for PROGs. PROG may,
of course, be used freely in the definitions of functions invoked
from LOGIC.

TS T T T T TR S DA A TR L T R L S G
R N N A S
s \.4-1 AR R LA AN CE RN PR ' e

' - R ) LA RSN e
S RS A N NS AR S R Y N TR W e .




4.6.8 Assigrments

P

(SETQ ident e)

P
A S

If e has the value v and ident 1is a proper identifier then
(SETQ ident e) reduces to v, and assigns v to ident as a side
effect. Of course, any other side effect of evaluating e also
occurs.

£ 52 8 A

If e has no value then (SETQ ident e) reduces to (SETQ ident e'),
where e' is the reduction of e. The assigrment side effact does
NOT occur.

L ST S ) % AEREAN

’

= Note that assignment (and indeed any other side effects) should
be used with some caution in LOGIC, since the order irn which
evaluations are performed is determined in part by the heuristic
search methods, and thus is not readily predictable.

Observe too that in order to obtain the LISP value of an
- identifier ident one must write "(EVAL ident)", not just "ident".
. That is, "(EVAL ident)" reduces to v (oer to (QUOTE v), as the
- case may be), where v is the value of ident. If ident has no
LISP value (that 1is, is "unbound") the attempt to reduce
(EVAL ident) will produce the LISP error message "UNBOUND
VARIABLE". Ideally, in this case, (EVAL ident) would simply be
g returned as its own reduction. However, the present
- implementation takes the more practical view that such a course
> would be too costly to justify (the overhead involved in the
extra testing being possibly quite considerable).

4.6.9 Selections
(SELECTQ e (q1 . s1) ... (gN . sN) u)

Here s1, ..., sN are lists of expressions.

. The reduction of the SELECTQ expression is basically the same as
< that of the expression

(COND ((OR (MEMQ q1 '(T OTHERWISE)) (EQ e q1)) . s1)

((OR (MEMQ qN '(T OTHERWISE)) (EQ e qN)) . sN))

except that reductions are expressed with SELECTQ and e is
evaluated just once at the beginnirng. If one of the selection
keys gqi is a list (i1 ... im) then the corresponding disjunct of
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the COND predicate is

(MEMQ e (LIST i1 ... im))

. 4.7 LOGLISP SPECIAL FORMS

. The remairing special forms do not occur in conventional LISP.
. They provide means by which the LOGIC programmer may control the
interaction between LOGIC and LISP in order to deal with wvarious
unusual circumstances.

X These special forms deal with the issues raised by the fact that

: LISP objects can meaningfully be interpreted not only (1) as LISP
programs capable of being (in all cases) reduced arnd (irn many
cases) evaluated, but also (2) as LOGIC expressions acting as
part or all of a predication or clause.

. The LISP programmer is accustomed to this situation. One of
. LISP's mcst distinctive features is that all LISP programs are
- also LISP data objects. The device of quotation permits the LISP

programmer to coin a name for any expression e by simply writing:
= (QUOTE e). The name of this name is (QUOTE (QUOTE e)), and so
. oL .

In LOGLISP we have to deal with the fact that LISP and LOGIC are
"mutually embedded" but are organized on rather different
semantic principles. LISP is based on the idea of denotation and
its main semantic operation is EVAL. LOGIC is based on reduction
and substitution (instantiation).

The process of constructing the LISP-reduction of an expression

is actually carried out by code written in LISP (although the

user need not be aware of this). This code invokes LISP!s EVAL
e and APPLY under suitable safeguards and does its best to provide,
in LISP-reducing e, the effects and the outcome that e may’  call
for as a meaningful LISP construct. However, since reduction of
e is NOT iderntical to evaluation of e in every case, the LOGLISP
programmer must either stay away from those cases where the
rotions diverge or else master the differences and the tools we
provide ‘for exploiting these.

®
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- These tools consist of the following family of ™quotation"
) constructs. Each provides a way of "immunizing™" an expression e
during the reduction process, in a way similar to the way in
which (QUOTE e) ‘“immunizes" e from being evaluated during the
evaluation process.

Since these forms do not occur in LISP, it 1is not already
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established what, if any, their values are. Hence 1in the

= '
) following discussion we shall give in each <case not only the ol
" reduction but also (where appropriate) the value. e
» (LOGIC-EXPRESSION e) [short form: (LOGIC e) ] o
3 Intuitively, (LOGIC-EXPRESSION e) specifies that the result of E:
< evaluation is to be interpreted as a LOGIC expression rather than Py

as a LISP object. The most obvious effect of this is to suppress
the quoting of non-atomic values which would otherwise occur.

- If e has the value v, and if v has the value w, then N

. (LOGIC-EXPRESSION e) reduces to w (or to (QUOTE w), as the case T 4
may be) and also has w as its value. If v has no value, then ;
(LOGIC-EXPRESSION e) reduces to the reduction of v.

If e has no value (LOGIC-EXPRESSION e) has no value, but reduces ﬁ?

to (LOGIC-EXPRESSION e') where e' is the reduction of e. o
Put differently, whern e has a value v, we reduce bﬂ'
(LOGIC-EXPRESSION e) by treating v as a LOGIC expression and .
reducing v. In practice it often happerns that v is reduced, in S
which case (LOGIC-EXPRESSION e) reduces to v. e
y
(LISP-OBJECT e) [short form: (LISP e) ] ﬁjﬁ
(LISP-OBJECT e) is reduced, but has the value e. _—
: In this respect, (LISP-OBJECT e) is like (QUOTE e). However, U
" (LISP-OBJECT e) differs from (QUOTE e) in that (LISP-OBJECT e) is iﬁt
- subject to instantiation, that is, (LISP-OBJECT e)*s is e
. (LISP-OBJECT e*s ) for all substitutions s. N
Note. Logicians will recognise this as the device of R
- Tquasi-quotation® which first appears in W. V. 0. Quine's }ﬁ‘
- Mathematical Logic (1949). The point of it 1is that one often .{ﬁ
- reeds to consider pieces of text which are "quotation schemas" - N
i.e., they are just like quotations except that they contain one R
or more "slots" awaiting further specification. Thus
(QUOTE (+ x 2)) rames the expression which is a 3-list whose e
successive elemerts are the atoms "+", "x", and "2"; whereas o
(LISP-OBJECT (+ x 2)) 1is an expression which can become RO
(LISP-OBJECT (+ 3 2)), or (LISP-OBJECT (+ 5 2)), etc., by et
substitution for "x". End of note. e
E N
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(QUOTE-ONLY-IF -GROUND e) [short form: (GROUND e) ]

The form (QUOTE-ONLY-IF-GROUND e) is similar to (LISP-OBJECT e),
but has a value only if no variables occur in e. More precisely,
(QUOTE-ONLY-IF-GROUND e) is reduced, but has a value only if no
variable occurs in e, in which case its value is e.

(LOGIC-GR e)

(LOGIC-GR e) is equivalent to (LOGIC (QUOTE-ONLY-IF-GROUND e)).
It follows that if any variable occurs in e then (LOGIC-GR 2) has
no value and is reduced.

If rio variable occurs in e then the reduction and value of
(LOGIC-GR ) are those of e.

(IRRED e)
(IRRED e) has no value, and its reduction is e (not the reduction
of e). This form may be wused to suppress reduction of an
expression which may not be reduced.
(Variable e)
(Variable e) has value and reduction T 1if the expression e
(instantiated) 1is a variable, value and reduction NIL otherwise.
"Variable" is, in fact, the name of a MACRO defired by

(DEFMACRO Variable (X) '(VARIABLE ,X))

We shall illustrate a few appliéations for these forms. First,
consider the expression

(LOGIC (SUBST (GROUND x) (GROUND y) (GROUND z)))

which, as it stands, has no value and is reduced. Suppose riow we
instantiate it,using the substitution

x = (+ (VAR A) 3)
y = (VAR Q)
z = (<= (VAR Q) 10)

to cobtain the expression

(LOGIC (SUBST (GROUND (+ (VAR A) 3))
(GROUND (VAR Q))
(GROUND (<= (VAR Q) 10))))

;-:: = U215 -




where VAR is rnot the name of a LISP function. Since no variables
now occur in the GROUND expressions these now have values, hence
so does the expression (SUBST ... ), and hence the whole reduces
to

(<= (+ (VAR A) 3) 10)

4.8 SIMPLIFYING IMPLICIT CONSTRAINTS--THE FUNCTION SIMPLIFY

If ¢ = (q env) is an implicit constraint then (SIMPLIFY c¢) is the
implicit constraint which results from reducing one or mere of
the predications in ¢ and dropping them if they reduce to "true".
Specifically, (SIMPLIFY ¢) 1is the result of the following
three-step algorithm:

1 let q be (CAR c¢) and env be (CADR c)

2 while q is nonempty

do let b*¥{env} be the reduction of
(CAR q)*{env}

if b*{env} is "true"
then replace q by (CDR q)
else return (LIST (CONS b (CDR q)) env)
3 return (LIST NIL env)

By "true" we mean any éxpression which has a value that 1is not
NIL.

4.9 THE EXTENDED DEDUCTION CYCLE

In the actual LOGIC cycle of our LOGLISP system we include & step
of simplification in step 1 of +the RUN 1loop. The full
description of the loop is then:

RUN: while WAITING is nonempty

do 1 remove some ¢ from WAITING
and let (x y) be (SIMPLIFY c)

2 if (x y) is solved
thern add (x y) to SOLVED
else add the resolvents of (x y) to WAITING

............
- o

.......
---------
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Note that the predication resolved away is the one which was just e
processed by SIMPLIFY and that it 1is therefore a reduced R
expression. In particular it may be the expression NIL (i.e. )
the LISP represerntation of falsehood). In this case, there will
be no resolvents forthcoming and (x y) will therefore be 2
failure.

4.10 CONTROLLING REDUCTION

It is sometimes helpful to inform LOGIC that an expression |is
reduced, either because it 1is known in advance that reductiorn
will merely reproduce the expression itself, or because reduction
would for some reason be inappropriate. This can be accomplished
by invoking the LISP MACRO IRREDUCIBLE with a command of the form

(IRREDUCIBLE id1 ... idn)

id1,...,idr. being proper identifiers. This having been done, any
expression of the form (idk ...) will thereafter be treated as
reduced, regardless of the nature of its subexpressions. The
effect of IRREDUCIBLE can be undone with

(REDUCIBLE id1 ... idn)

(REDUCIBLE is alsoc an MACRO). REDUCIBLE will not, however,
repeal the system-mandated immunity of PROGs to further
reducticr. .

These matters are discussed further ir Chapter 5, Creating
Krnowledge Bases.

4.11 SUBSCRIPTED VARIABLES

We have mentioned before that the variables occurring ir clauses
are, ir. effect, renamed before resclution so as to prevent
unintended identification of variables in different clauses.
This is accomplished by "subscripting" the variables in the
clauses with appropriately chosen non-regative integers.
Ordinarily this subscripting is hiddern from the user, and is, in
fact, performed implicitly and quite economically. Subscripted
variables may, however, appear 1in answers to queries, and are
routinely seen when monitoring deductions (see Chapter 10). In
such cases, the subscripted variable is an iderntifier whose print
rname consists of an ordinary variable suffixed by ore or more
subscripts, each subscript consisting of a """ followed by ore cr
more digits. Examples are x"7 and date™3717. Such wvariables,
generated by the system, are the only variables which may contairn
"°n . {ser-coined variables may not contain "°".
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4.12 UNIFICATION IN LOGLISP

There are a few points worth noting abhout the LOGLISP
implementation of unification.

First of all, there is no check performed to see if a unification
has created any cycles. Such a check would, if routinely made,
be time-consuming. It appears that in rnormal LOGIC programming
the check 1is unnecessary. Since unification is confined to the
cases where the 1input expressions do not have variables in
commor. , cycles can arise only 1if c¢lauses or queries are
formulated in certain unusual ways.

The use of implicit representations throughout in any case makes
it possible to work with some infinite (cyclic) expressions as
though they were finite (which in a suitable sense they are). It
is only wher a sophisticated user wishes to exclude such
expressions from the domain of discourse that their detection
becomes necessary.

Of coursz2, any process (such as a naive recursive realization)
which seeks to traverse every path in such an expression will run
or. indefinitely, and the user will want to aveoid this situation.
In designrning LOGLISP we have assumed that any user deliberately
creating such expressions will be sophisticated enocugh to use
LISP to protect himself without being lectured at by us. We have
further assumed that any user inadvertently creating such
expressions will prefer to take the error messages or other
irdicaticns of his mistake which LISP will provide - in place of
the expensive LOGLISP overhead which would be needed to protect
him from them.

4.12.1 Proper Names

Two proper rames, say al and a2, are considered to be wunifiable
iff (== a1 a2) where == could be defined by the macro

(DEFMACRO == (X Y)
“(OR (EQL ,X ,Y)
(EQUAL ,X ,Y)))

This produces just the effect one wants, but note that distinct
identifiers with the same PNAME are not unifiable (it cannot be
the case that both are INTERNed). The integer 1 unifies with the
floating-point numeral 1.0, on the other hand, and distinct
occurrerces of the same floating-point numeral are unifiable.
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4.,12.2 Special Forms

Expressions in QUOTE, FUNCTION, and F-L are treated specially by
the wunifier. (QUOTE e1) unifies with (QUOTE e2) if and only if
(EQUAL (QUOTE e1) (QUOTE e2)), and similarly for (FUNCTION £1)
with (FUNCTION f2). (F-L . e1) wunifies with (F-L . e2) if arnd
orly if el and e2 are the same list.

In addition to these cases, expressions of the form (CONS el e2)
may unify with expressions (QUOTE (a . d)). In attempting to
unify two such expressions any 1logic variables appearing in
(a . d) will be treated as "constants". Let us define ql[v] as
follcws: if v is a proper rname then qlv] is v, otherwise qlv] is
(QUOTE v). In attempting to unify (CONS el e2) with
(QUOTE (a . d)) the unifier proceeds by attemptirng to unify el
with qlal, then, if successful, unifying e2 with q[d]. Variables
irn e1 arnd e2 will be bound to subexpressions of a and d, QUOTEd
when appropriate. Some examples will make things clear. The
expression

(CONS x y)
urnifies with
(QUOTE (A B C))

with mgu x = A, y = (QUOTE (B C)). To take a mcre complicated
case,

(CONS (CONS F x) (CONS u v))
unifies with

(QUOTE ((F (A B)) C D))
Wwith mgu

x = (QUOTE ((A B))), u = C, v = (QUOTE (D))

Expressicns ir QUOTE, FUNCTION, and F-L are not otherwise.

unifiable. It should be remarked that an expression 1like
(F A QUOTE (B)) does not contain a quotation, merely an
occurrence of the constant QUOTE.

"4.,12.3 Variables As Tails
Ordirarily, an expression is either an atom or a 1list, but ore
may, in fact, introduce expressions which are composite but not

lists. The only useful expressions of this class are those for
which repeated CDR's eventually yield a variable, an example

- 4-19 -




beirg (P (F x) . y). We remark that the definitions of
unification and resolutiorn given 1in chapters 2 and 3 do not
actually require that non-atomic expressions be lists.

——
- kA ." .

In a sense, there is really nothing special about a composite
expression which is not a 1list, but such expressions are
sufficiently unusual that further discussion may be in order.
Expressions of this sort are particularly useful in dealing with
operators which take a variable number of arguments. To
illustrate, the expression

[ A

(+ x . y)

unifies with
(+ u 7))
with mgu
x = u, y = (7)
arnd also unifies with
(« (Fu 3)7 (G A B))
with mgu
x = (Fu 3), v =(7T (GA B))

Thus a simple, but still rather flexible, rule for solvirng
equations involving sums may be asserted by

(ASSERT (== (+ x . y) 2) <= (== x (- 2z (+ . y))))

4.12.4 The "Dor.'t Care" Symbol

The identifier [], called the "don't care" symbol, unifies with
any expression whatever, but such a unification introduces no
bindings. The effect is as though each occurrence of [] were
replaced by a new variable not appearing elsewhere in the
expressions to be unified, except that the implementation
beriefits from use of the don't care symbol.




To illustrate, the expression DA

(P 11 x (D) T

unifies with £
(P (F 1) (G &) 7) o

with mgu A;:
x = (G A) . %

4.13 REDUCTION OF EXPRESSIONS ENDING IN VARIABLES ;3;
The reduction of an expression (f e1 ... eN . v) will row be E

explained. Such an expression has a value if and only if f is
the name of a- MACRO and the macro expansion has a value.

If f is a proper identifier, but not the name of a MACRO, then <
the expression has no value but reduces to (f e1' ... eN' . v),
where the ei' are the reductions of the ei.

The sequentially evaluated LISP forms, those formed with AND, OR,

COND, PROGN, PROG1 and SELECTQ, may also involve variable tails. j}j
Reduction proceeds as described before, stopping when a variable A
tail 1is encountered. Such expressions may have a value if the e
"evaluation path" avoids variable tails entirely. L
. -ss
4.14 SPECIAL RULES FOR RESOLUTION -
The system "automatically" incorporates a number of special rules ﬁ;
applicable to certain predicate symbols. In most cases these 12;
rules are just economical implementations of computations that ek
could be achieved with ordinary ‘clauses, but the rule for -
CONDitional expressions constitutes a fundamental extension cof .
the system, as it introduces a form of "rnegation as failure”. .;:
RN
Application of any of the rules car be erabled or disabled at ;Eﬁ
will by the user. g
..j.-'

4,14.1 The Rules

Each of the rules is introduced by an 1informal, clause-like g
descriptionrn, followed by discussiorn arnd, in some instances, a AL
rearly equivalent formulation with actual clauses.

4.14,1.1 Equations -

...........
---------
.........
--------
.....

......
-----------
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(== el e2) <- "el and e2 are unified"
The rule is just the reflexive law of =2quality, and amounts to

(ASSERT (== x x)) .

4.14.1.2 Corjunctions -
(AND p1 ... pN) <= p1 & ... & pN

Bearing in mind that (AND) reduces to T, the rule for AND amcunts
to

(ASSERT (AND x . y) <- x & (AND . y))
4.14.1.3 Disjunctions -
(OR p1 ... pN) <= pi, for i =1 ... N

Again, bear in mind that (OR) reduces to NIL. The rule for OR is
practically equivalent to the two clauses

(ASSERT (OR x . y) <= x)
(ASSERT (OR x . y) <- (OR . y))

except that resolvents for all of the disjuncts are obtained in
one step.

4.14.1.4 Corditionals -

(COND (p1 q1) ... (pN gN)) <- pk & qk,
for the first k such that pk is provable

Let us refer to the constraint from which (COND ...) was selected
for resolution as the "origirnal constraint". The control
mechanism, in fact, begins by attempting to prove pl. If it
succeeds in doing so, it introduces a new resolvent consisting of
gk and the other predications of the original constraint 1in the
envirormernit which proved p1. (Such a resolvent will eventually
be produced for each proof of p1, if the search continues so
long.) 1If all attempts to prove p1 terminate in failure then the
corntrol mecharism attempts to prove p2, and so on. All of these
searches are carried out within the heuristic limitations imposed
onn the problem at the beginrnirng. These searches are, mcreover,
carried out "in parallel" with searches for other solutions to
the initial problem, in accordance with the standard heuristic,
so that depth-first runaway will be avoided to the extent
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possible.

The "arms" of the CONDitional expression rneed rnot have exactly
two expressions. An arm of the form (pk) is, for purposes of
resolution, equivalent to (pk T), while an arm of the form
(pk qk1 ... qkm) is equivalent to (pk (PROGN gk1 ... qkm)).

This treatment of conditionals depends on a feature of the system
not hitherto mentioned, namely the ability to associate a
"continuation" with a node., The continuation is itself just a
rode of a somewhat special nature which is not itself available
for computing resolvents. We write a node C with continuation K
as "[C Continuation: KI". The resolvents of [C Continuation: K]
are exactly the nodes [R Continuation: K] such that R is 1
resolvent of C.

Let (q env) be a node whose resolvents are desired, 1let (CAR q)
be P, and suppose that plerv} has the form
(COND (p1 q1) ... (pN gN)). We obtain a "resolvent" which is

[((p1) env)
Corntiruation:
((LOGLISP:CONDITIONAL (q1) (p2 g2) ... )Y¥q' env)]

where q' is (CDR q).

Each proof of p1 generates a resolvent (NIL envz) with
the same contirnuation, from which we "pop up" the
continuation to obtain a resolvent (((q1).q') envz).
If and when all attempts to prove pt1 fail,

we pop up the corntirnuatiorn to obtairn

(C(COND (p2 q2) ... (pN gN)).q') env)
s 1
which is added to WAITING.

Continuations are not usually printed when explaining
answers or monitoring deductions, rather the fact

that a node has a continuation is indicated by

prirnting "CONTINUED". Users

can instruct the system to print continuations in

full by invoking the command (CONTINUATIONS ON).
(CONTINUATIONS OFF) returns the system to the normal mode.

4.14.2 Controlling The Special Recsolution Rules

All of the rules may be enabled or disabled by inveoking functions
of the form (AUTO-x "flag") where flag may be either :0N or :0FF.
The complete set of control functipns for the resolution rules is
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(AUTO-z= "flag")
(AUTO-AND "flag")
(AUTO-OR "flag")
(AUTO-COND "flag")

Each macro returns its argument. T or NIL may be used instead of
:ON or :0FF. One may also type the nested expression

.fl';):

A: ‘; LY .‘;

»
I"

*(AUTO-AND (AUTO-OR :OFF))

-
, LJ

to disable both the AND rule and the OR rule. All of the rules
are enabled by system initialization, hence by RESTORE-LOGIC (see
the chapter or filing knowledge bases).[>>>Chapter 8]
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CHAPTER 5
CREATING KNOWLEDGE BASES

To create a knowledge base one begins with the empty knowledge
base and adds clauses to it one at a time as explained below. Or
orie carn extend an already existing knowledge base by installing
it in a LOGLISP workspace and adding more clauses to it. The
empty knowledge base is created by executing the command

(START)
which discards any clauses already present and 1initializes the
LOGIC part of the workspace (without affecting the LISP
definitions, if any, which the user may have set up).
5.1 ADDING A CLAUSE TO THE KNOWLEDGE BASE

The assertion command

v,
L

(ASSERT B <- A1 & ... & An)

-
-

.
-
~

l‘l
L4

’
L
» 0"'0

causes the clause B <- A1 & ... & An to be added to the current
krnowledge base.

"_r,l.l a2

The arrow and the ampersands may be omitted. We shall sometimes
omit them irn the examples in this manual.

5.1.1 Naming A Clause

A clause may be given a user-coined nrame. This is most
converiiently done at the time the <clause 1is added to the
knowledge base, using an extended assertion command. Execution
of the extended assertion command

(ASSERT N B <- A1 & ... & An)
adds the clause B <- A1 & ... & An to the current knowledge

base, as before, but also ascribes to it the name N. The
user-coined name N may be any proper identifier. For example,

the following four transactions: s

laCany

(ASSERT (Born Herbrand 12 February 1908)) T

ASSERTED ‘:':-':

RN
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gﬁé
(ASSERT (Died Herbrand 27 July 1931)) Rl
ASSERTED Y

;e
(ASSERT TURING1 (Born Turing 23 June 1912)) —
ASSERTED N

NN
(ASSERT TURING2 (Died Turing 7 June 1954)) N
ASSERTED N

add four clauses to the knowledge base, the first two of which

are anonymous, and the second two of which have been named

respectively TURING1 and TURING2. Note that each assertion

transaction is terminated by the message ASSERTED. If the clause

is ill-formed the message returned will be ERROR-Ignored, in
. which case the knowledge base is not altered by the transaction.

The clauses making up a knowledge base are organized into groups
called procedures. All clauses in the knowledge base whose
cornclusions have the same predicate P are grouped together into a
procedure which 1is called "the procedure P". It is thought of,
intuitively, as the portion of the knowledge base which |is

relevant to establishing those facts in the world whose predicate
is P.

Assuming that the knowledge base was empty before the above four e
clauses were added, the contents of the knowledge base now -l
consists of two procedures, each containing two clauses.

..
‘l
[
]

:' \:‘_.
By invoking the PRINTFACTS command [see the following Chapter on ﬁfgﬁ
Displaying Knowledge Bases] the contents of the knowledge base Q&ag
can be displayed, its clauses organised into procedures. Thus: felan
Pl ) e

R

(PRINTFACTS)
;Kknowledge Base:

(DEF INE-PROCEDURE Born () DO
((Borr Herbrand 12 February 1908)) - ;"'
((TURING1 (Born Turing 23 June 1912)))) P

(DEFINE-PROCEDURE Died ()
((Died Herbrand 27 July 1931))
((TURING2 (Died Turing 7 June 1954))))

;End of Knowledge Base.
DONE
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) If one adds a clause with name N to a procedure which already has
? a clause named N, then the name is removed from the older clause

and attached to the new orne. A single proper identifier 'may,
i however, be used to name as many clauses as one likes, provided
\ rro two of these are in the same procedure.

5.2 THE FACTS MODE

A somewhat more convenient way of asserting a succession of
clauses is provided by the FACTS mode. By executing the command

(FACTS) the user puts the system into the FACTS mode. This is
simply a wait-read-assert cycle which expects successive clauses el
to be typed in. The prompt-message Assert> is printed by the RN
system to signify its readiness to receive the next clause. Thus R
the four clauses of our example could have been asserted by mears =y

of the following excursion through the FACTS mode: TLT
(FACTS) : y
"Assert> ((Born Herbrand 12 February 1908)) ' N
ASSERTED S
Assert> ((Died Herbrand 27 July 1931))
ASSERTED ot
Assert> (TURING? (Born Turing 23 June 1912)) DA
ASSERTED e
Assert> (TURING2 (Died Turing 7 June 1954)) NN
ASSERTED o
Assert> END-KEY
DONE

. Such a FACTS session is terminated by hitting the blue END key in

resporrse to the Assert> prompt. It should be noted that the

i format in which a clause B <- A1 & ... & An is typed for input
. to the FACTS mode is the 1list (B A1 ... An) . The first item on
5 this list may be the optional user-coined name, as {illustrated
' above. The list format enables the system to accept inputs which
are too large to fit all on one line. As in the standard LISP e

convention, the system reads lire after line of typed input until Ny
y a syntactically complete object has been formed. Thus 1in the

- following FACTS transaction the three~-compeorient clause R

AGE-FORMULA is asserted on several lines, each of which after the e

first is prompted by a colon: ]

ey

N

o

]

N
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(FACTS)
Assert> (AGE-FORMULA
(Age person given-year a)
(Born person [] [] birth-year)
==z a (- given-year birth-year)))
ASSERTED
Assert> END-KEY
DONE

The clause AGE-FORMULA is now installed as the sole compornent of
a procedure Age which computes a person's age in a given year
by looking up the year in which that person was born and
subtracting it from the given year. Note the use of the don't
care symbol ( [] ) to match the day and month of birth, neither
of wWwhich is needed for the deduction. The contents of the
knowledge base may again be viewed by executing (PRINTFACTS):

(PRINTFACTS)
;Knowledge Base:

(DEFINE-PROCEDURE Born ()
((Born Herbrand 12 February 1908))
((TURING1 (Born Turing 23 June 1912))))

(DEFINE-PROCEDURE Died ()
((Died Herbrand 27 July 1931))
((TURING2 (Died Turing 7 June 1954))))

(DEFINE-PROCEDURE Age ()
(AGE-FORMULA (Age person given-year a) <-
(Born person [] (] birth-year) &
(== a (- given-year birth-year))))

;sEnd of Knowledge Base.
DONE

The "<-" and "&" appearing in AGE-FORMULA are simply "syntactic
sugar" intended to assist the reader in perusing complex clauses.
These may also be typed in clauses given to ASSERT or FACTS, but
we usually don't bother to do so.

An ill-formed clause typed to FACTS will be ignored, arnd a
message Will be typed to inform the user. This HELP message will

also be typed in response to the user hitting the blue HELP key
following the Assert> prompt.
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5.3 ADDING CLAUSES FROM LISP FUNCTIONS

The assertion function ASSERT is just a LISP MACRO, and as such-

may be invoked by any LISP function. LISP programmers will
usually find it more convenient, however, to use the function
ASSERT* of one argument, whose value should be a list as might be
typed to FACTS (or appear as the tail of an inveccation of
ASSERT). If the clause is well-formed it will be added to the
knowledge base and ASSERT¥* will return NIL. If the clause 1is
ill-formed it is ignored and ASSERT¥* returns ERROR.

5.4 ORDER OF CLAUSES IN THE KNOWLEDGE BASE

The order of the clauses within a single procedure is first the
data, if any, in the order in which they were asserted, then the
rules of the procedure, in the order in which they were asserted.
This is the order irn which the clauses are printed by PRINTFACTS.

The order of the procedures in the knowledge base is the order in
which clauses for the proéedures were first asserted. This also
is the order used by PRINTFACTS. It should be noted that the
o;der of procedures is frequently changed by editing (see Chapter
7).

5.5 DECLARING ATTRIBUTES OF PROPER IDENTIFIERS

One may ascribe various attributes to proper identifiers in order
to influerice the operation of LOGIC. An example is :IRRED , the
attribute which indicates 1irreducibility, and others will be
introduced 1later. Several methods are provided for declaring
such attributes.

(PROCEDURE "id" "at1"™ ... "atn") {MACRO])
(CONSTANT "id" "ati1"™ ... "atn") [MACRO]

Either of these sets the attributes of the proper identifier id
to (atl...atn), having first erased any previous attributes.
Thus (PROCEDURE ID) declares that ID has no special properties.
PROCEDURE 1is intended for use with predicates, CONSTANT for use
Wwith other identifiers, but both names in fact invcke the same
function. PRINTFACTS displays attributes of predicates in a list
following the predicate name in the DEFINE-PROCEDURE statement.
The ()s following Born, Died, and Age in the above example are
empty attribute lists.
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(ADD-DECLARATION "atr™ "id1"™ ... "idrn) ([MACRO]

adds attribute atr to those already declared for 1identifiers
id1,...,idn.

(REMOVE-DECLARATION "atr" "idi1" ... "idn") [MACRO]

removes attribute atr from among those presently declared for
identifiers id1,...,idn.

As mentioned earlier, alternative means are provided for
declaring identifiers irreducible.

(IRREDUCIBLE "id1" ... "idn") {MACRO]

declares id1,...,idn to be irreducible (attribute :IRRED ),
retaining any previous attributes.

(REDUCIBLE "id1" ... "idn") {MACRO]

erases the attribhte :IRRED from id1,...,idn, without affecting
other attributes.

(IRREDUCIBLE* L) (FUNCTION]
(REDUCIBLE#* L) [FUNCTION]

The argument L should be a 1list of proper identifiers. Each
functiorn has the same effect as the corresponding MACRO, for the
identifiers listed.

One may also declare attributes of identifiers while 1in FACTS
mode. To do so, one types a line of the form

Assert> (id at1 ... atn)
DECLARED

irn respornse to the prompt "Assert> ". The effect is to declare
atl1,...,atn as attributes of id in addition to any previous
attributes. Just as one can enter assertions over many lines, so
orne can type such declarations over many lines if it should ever
seem recessary.

The attributes used by LOGIC are :IRRED, :ONERES , :HIST and 4
(:INDEX . ix1l). :IRRED has already beer explained. :ONERES and e
(:INDEX ...) will be discussed in Chapter 9, while :HIST is NERE
treated in Chapter 11. Other attributes may be declared and will s
be recorded, but have no effect on the operation of the system.
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A short sample session with LOGLISP:

(START)

DONE

(FACTS)

Assert> ((Occupation Herbrand Mathematician))
ASSERTED

Assert> ((Occupation Turing Mathematician))
ASSERTED

Assert> (Occupation :HIST :ONERES)

DECLARED

Assert> END-KEY

DONE

(PRINTFACTS)

;Knowledge Base:

(DEFINE-PROCEDURE Occupation (HIST ONERES)
((Occupation Herbrand Mathematician))
((Occupation Turing Mathematician)))

;End of Knowledge Base.
DONE

5.6 ADDING PROCEDURES VIA DEFINE-PROCEDURE

DEFINE-PROCEDURE is a built in LOGIC macro and as such allows the
user a fourth method (others are ASSERT, ASSERT*, and FACTS) for
entering assertions into the knowledge base. The LISP expression
below

(DEF INE-PROCEDURE p (at1 ... atN) asrnl ... asrnM)
macro expands to the following LISP expfession

(PROGN
(ERASEP p) )
(PROCEDURE p at1 ... atN)
(ASSERT* (QUOTE asrni))

.

(ASSERT* (QUOTE asrnM))) o

Ty

.
L3 ]

which first erases the entire procedure p (if it -existed) from D
the kriowledge base, then assigns attributes at1 ... atN to p, and
finally adds assertions asrnl ... asrnM to the knowledge Dbase.
The wuser may enter procedures into the knowledge base by typing

L
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at a Lisp Listener DEFINE-PROCEDURE macros or, more conveniently,
create, in an editor buffer a collection of macro calls. These
procedures, entered into the editor buffer, can then be installed
by evaluating the buffer (via the extended editor commard META-X
"evaluate buffer"). After a procedure p has been entered into
the knowledge base in this manner one can edit it by going irto
the editor (using any convenient method of entrance) arnd
executing the "edit definition"™ command (META-. p) and reinstall e
it by reevaluating the edited expression (via HYPER-CONTROL-E for BN
example). S

5.7 CONVENTIONS FOR DISTINGUISHING VARIABLES
The normal convention is that symbels beginning with lower case

letters are LOGIC variables, and that all other symbols are
proper identifiers. Other conventions can, however, be adopted.

(VARIABLES "vs") [MACRO]

(VARIABLES* vs) [FUNCTION]

set the variable convention according to vs and return the former
convention. If vs is NIL the convention is not changed, and the
current convention is simply returned. Besides NIL, allowed

values for vs are
1. The atom LC to specify the (default) lower case convention

2. The atom UC to specify that identifiers beginning with upper O
case letters are variables e

3. The ASCII code for a character which will begir all variables

4, A single character identifier giving the initial character ﬁgi
for variables : e

To illustrate, starting with LOGLISP freshly lcaded,

(VARIABLES NIL) -
LC

(VARIABLES ?)
LC

(VARIABLES NIL)
l>

(ASSERT (Member ?2x (?x . ?21s))) T
ASSERTED -

- 5-8 -
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(ASSERT (Member ?x ([] . ?1s)) <~ (Member ?x ?1s))
ASSERTED

defirnes a membership relatiorn on expressions akin to, but not at
all the same as, MEMBER for lists, using the new convention.

It is not intended that one mix variable conventions within a
knowledge base, though it is actually possible to do sc in some
situations. The determination that arn identifier is or is not a
variable is made at the time the identifier enters the LOGIC part
of the system, as when a clause is entered or a query submitted,
and subsequent changes in the convention cannot alter that
determination.

5.8 CONVERTING VARIABLES TO OTHER CONVENTIONS

Since the programmer may choose from a number of conventions for
distinguishing variables from identifiers, it 1is sometimes
desirable to assert clauses written with different conventions
irto the same knowledge base, particularly when the clauses in
questiocn have been recorded in files on -disk.- We corsequerntly
provide means for converting variables from cne convention to
arother, so that the resulting knowledge base will exhibit a
uniform convention for naming variables.

To accomplish this, we allow the user to establish two
conventions for distinguishing variables from proper identifiers,
an "input" convention which will be used to recognrnize variables
i expressions submitted to LOGIC, and arn "output" convention in
which these variables will be represented in the knowledge base.

(CONVARIABLES "vs") {MACRO]
(CONVARIABLES* vs) [FUNCTION]

establish the input convention according to vs (specified as for-

VARIABLES), leaving the previous convention as the output
convention, and return the previous, now output, convention. If
vs 1is NIL the input convention is set to the output convention
and conversion is disabled. Variables are converted to the
output convention by prefixing a single character to the print
rame: "v" if the output convention is LC, "V" if it is UC, and
the character which distinguishes variables in any other
conver.tion.

Wher conversiorn has beern enabled by invoking CONVARIABLES the
irput convention can be changed using either CONVARIABLES or
VARIABLES. In this mcde of operation VARIABLES reports the
previous input mode. The output convention cannot be changed
until conversion has beern disabled by (CONVARIABLES NIL).

e e
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Note that print names of proper identifiers are never altered,
evern, if these would be treated as variables in the output
cornvention. If such identifiers occur they will be treated as
proper identifiers 1in the knowledge base, but some confusion is
possible when clauses are printed, or if such identifiers are
extracted and later re-entered into LOGIC using LISP.

5.9 SUBSCRIPTED VARIABLES IN CLAUSES

Although it rarely happens in practice, one might attempt to
assert a clause containing subscripted variables. For technical
reasons, subscripted variables may not appear in the knowledge
base. If one does attempt to assert a clause containing
subscripted variables, or variables in the sequence genvarl,
genvar2, ..., the system will rename such variables, wusing
variables genvar<numeral>, so that the clause which results ir
the knowledge base 1is a variant of the assertion which was
errtered, and has no subscripted variables. When a non-standard
variable convention is 1in effect the generated variables are
ad justed appropriately.
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CHAPTER 6 ::;j::;{

' DISPLAYING KNOWLEDGE BASES N

: Various commands are provided for viewing the contents of a
knowledge base.

6.1 DISPLAYING THE ENTIRE CONTENTS OF A KNOWLEDGE BASE

The command (PRINTFACTS) causes the system to print out a display
of the entire current knowledge base.

The display is organised into groups of clauses preceded by the
message ";Knowledge Base:". Each group of clauses constitutes a
(logical) procedure. That is to say, the header of every clause
ir the group has the same predicate (say, P). A procedure P,
having attributes AT1,...,ATn, naming the collection of clauses
cCt,...,Ck, is displayed in the following way:

(DEFINE-PROCEDURE P (AT1 ... ATn)
C1

L

LINCIE A

e

Ck)
where each Ci, having head A and body B1,...,Bm is displayed:
(A <-
B1 &
Bm) R
- The order in which the clauses appear in the display 1is data
N first, ther rules, in the order in which they were asserted

within each class. The display 1is terminated by the message
"-End of Knowledge Base.".
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6.2 DISPLAYING A PROCEDURE

The commarid (PRINTFACTSOF P) displays the procedure P in the same
style as that of the (PRINTFACTS) display. 1If one wishes to
print several procedures P1, ey PN one types
(PRINTFACTSOF P1 ... PN).

The command (PRLENGTH P) returns the number of assertions in the
procedure P:

(PRLENGTH Borr)
2.

6.3 DISPLAYING THE SET OF DEFINED PREDICATES

The command (PREDICATES) returns a list of the predicates for
which logic procedures are defined in the current knowledge base.
With the example of the preceding chapter we have:

(PREDICATES)
(Borr. Died Age)

The command (CONSTANTS) returns a list of the constants which
have been declared. These are proper identifiers other than
predicates which have special LOGIC attributes.

6.4 DISPLAYING DATA IN WHICH A GIVEN PROPER IDENTIFIER OCCURS

It is often convenient to be able to retrieve and display the set
of data in a given knowledge base in which a given notion occurs
explicitly. Such a set in some sense corresponds to what the
knowledge base says about that notion in a direct way. The
command (PRINTCREFSOF C) displays all data in which the constant
C appears somewhere. These clauses are organized into groups by
their procedure name, but the entire procedure is not necessarily
g?own (or.ly those of its data are shown which actually contain




Given that:

(CONSTANTS)
(Herbrand Turing)

then

(PRINTCREFSOF Turing)
Turing

(TURING1 (Born Turing 23 June 1912))
(TURING2 (Died Turing 7 June 1954))

Turirng

6.5 RETRIEVING A PROCEDURE AS A LIST

The procedure P may be obtained as a LISP data object, namely, as
the 1list of 1its constituent clauses. This list is returried as
the value of the command

(ASSERTIONSOF P)

Each clause B <- A1 & ... &An in the procedure is represented
as the 1list (B A1 ... An). If the clause has the user-coined
name N then it is represented as the list (N B A1l ... An). For
example, (ASSERTIONSOF Born) returns the list

(((Born Herbrand 12. February 1908.))
(TURING1 (Born Turing 23. June 1912.)))

The result of ASSERTIONSOF shares no 1list structure with the
irternal representation of the knowledge base, thus list-altering
operations such as RPLACA and RPLACD performed on this list will
have no effect on the knowledge base.

6.6 RETRIEVING INDIVIDUAL CLAUSES

One may display one or more individual clauses using a command of
the form

(PRINTNA dsg?1 ... dsgn) [MACRO]

where dsgl,...,dsgr are "clause desigrators".

In its simplest form a clause desigrator is just a c¢lause name,
but more elaborate forms may be used to resolve possible
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ambiguities, and indeed to desigrnate any clause in the knowledge
base, whether named or not.

The possible forms for clause designators are shown below. Here
‘pred' denotes a predicate, 'name' a clause name, and 'rumb' a
positive integer.

name (possibly ambiguous)
(pred name)
(pred rnumb) (possibly ambiguous)

(pred :DATUM name)
(pred :RULE name)
(pred :DATUM numb)
(pred :RULE numb)

As indicated, some of these forms may be ambiguous, deperding on
the state of the knowledge base. Where a number is given, it
specifies the ordinal position of the clause within its class
(rules or data) in the indicated procedure. The concise form
(pred numb) is ambiguous if the procedure for 'pred' has both a
datum 'rumb' and a rule 'numb', The forms (pred :DATUM name) and
(pred :RULE name) are redundant, and either is treated as though
it were (pred name).

PRINTNA prints the indicated clauses and returns the list
(dsg1...dsgr).

An appropriate error message will be printed for any designator
which is either ambiguous or fails to designate an clause.

For example:

(PRINTNA AGE-~FORMULA)

(AGE-FORMULA (Age person given-year a) <-
(Born person [] [] birth-year) &
2= a (- given-year birth-year)))

(AGE-FORMULA)

(PRINTNA (Born 1) (Born 2))

((Born Herbarnd 12 February 1908))
(TURING1 (Born Turing 23 June 1912))
((Born 1) (Born 2))

(PRINTNA (Borr 3))
No assertion.
((Borr. 3))




One may also retrieve an individual clause as a 1list. The
function

(ASSERTION dsg) (FUNCTION]

returns a list representing the clause designated by (the value
of) 1its argument, if there is one, NIL if the argument fails to
designate a clause. Clauses are represenived in the same manrer
as with ASSERTIONSOF.

6.7 PRINTING CLAUSE NUMBERS

The numbers used to designate anonymous clauses do not ordirnarily
appear when these clauses are printed, whereas names of clauses
do appear. If one wants the numbers to be printed as well, the
(LISP) variable *ASRNNUMBERS should be set to any non-NIL value.

To illustrate with a small example:
(PRINTFACTSOF Older)

(DEFINE-PROCEDURE Older()
((Older Drobny Rosewall) <-)
((Older Rosewall Goolagong) <-)
((Older x z) <-
(Older x y) &
(Older y 2))
((Older x y) <-
(Before x y)))

(Older)

(SETQ *ASRNNUMBERS T)
T

(PRINTFACTSOF Older)

(DEFINE-PROCEDURE Older()
(1 (Older Drobny Rosewall) <-)
(2 (Older Rosewall Goolagong) <-)
(1 (Older x z) <-
(Dlder x y) &
(Dlder y 2))
(2 (Older x y) <-
(Before x y)))

(Older)
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Note that data and rules are numbered separately. It should,
however, be easy to distinguish the two. It is perhaps worth
pointing out that one can properly install a clause by typing

(ASSERT 2 (Older x y) <- (Before x y))

but that the integer "2" is treated as sugar, and consequently
has no effect on the position of the clause in the procedure.

Wher *ASRNNUMBERS is non-NIL, ASSERTIONSOF and ASSERTION 1include
rumbers in the lists they return.
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CHAPTER 7
EDITING KNOWLEDGE BASES

The most convenient place (and in the current implementation the
only place) to edit clauses is in Zmacs, the Lisp editor. To do
this, create the knowledge base in an editcr buffer using
DEFINE-PROCEDURE, and install it via the extended editor command
META-X "evaluate buffer”. To then edit a procedure, simply
reenter the editor, edit the DEFINE-PROCEDURE form and reevaluate
it (crne way -would be HYPER-CONTROL-E). This method of
interaction allows the user to make use of the extensive editing
capabilities of Zmacs.

7.1 REMOVING PROCEDURES FROM THE KNOWLEDGE BASE

If ore wishes to remove one or more procedures P1, ..., PN from
the current knowledge base orie invokes the command
(ERASEP P1 ... PN).

7.2 DELETING CLAUSES

A number of special functions are provided for deleting selected
clauses from the knowledge base. In most cases we provide both
macros for use from the terminal, and functions intended to be
called from LISP functions.

(DELETEN "dsgi" ... "dsgn") {MACRO]

deletes the clauses designated by dsg?,...,dsgn.

Inappropriate desigrators are ignored, and DELETEN returns a list
of designators for clauses which were actually deleted.

(DELETENM dsg) [FUNCTION]

deletes the clause designated by dsg, if there is one. DELETENM
returns T if a clause was deleted, NIL otherwise.

(DELETE= . "ecls") {MACRO]
(DELETE=* cls) [FUNCTION]

Each of these functions deletes the clause which is EQUAL to the
specified clause, if there is one. Clause names and "sugar" in
cls are igrored in determining equality. Either function returns




- T if the specified clause was found and deleted, NIL otherwise. Eﬁi
&£ ._""'
v The following examples illustrate the use of DELETE= and DELETE:=* Zj?

q irn the context of the example used earlier:

; (DELETE= (Born Turing 2 June 1912)) o
" T "\:'
; (DELETE=* '((Died Turing 23 October 1954))) ~

T
The effect of these is to delete the two clauses giving dates of s

y birth and death for Turing. Note that when using these to delete I?

. rules the variables specified in the parameter to DELETE= or N
DELETE=* must be the same as those appearing in the knowledge AN
base. RN
(DELETEA . "cls") [MACRO] ERE
(DELETEA#* cls) (FUNCTION] N

N The argument specifies a clause, as with DELETE= and DELETE=z*. ?fb‘

All clauses which are instances of the specified clause are
deleted. Either function returns T if at least one clause was
deleted, NIL otherwise. The predicate of the header of the o

argumer.t must be a proper identifier, not a variable. 3ﬁ
(DELETER . "cls") [MACRO] A
(DELETER¥* cls) . [FUNCTION] R
-2
These functions are like DELETEA and DELETEA¥%, ==z
except that only rules will be deleted. N
- _A ‘-‘u
~ \‘.
- (DELETED . "cls") {MACRO] :K:
: (DELETED#* cls) [FUNCTION] xi§
The same, except that data are deleted. -
o
n._:\._‘-
=
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CHAPTER 8
FILING KNOWLEDGE BASES

The current knowledge base may be preserved in a file by the
LOGIC primitive SAVE-LOGIC.

(SAVE-LOGIC pathrame 4%OPTIONAL (verify T) (compile T) (package
:USER))

The functicern SAVE-LOGIC writes to the file (specified by
pathriame) the current knowledge base (using the function
PRINTFACTS) preceded by the two lines displayed below:

;33 -%- MODE: LISP; BASE: 10.; PACKAGE: package -%-
(VARIABLES conv)

The first line is the mode line. The second lire is a c¢all on
the macro VARIABLES with argument conv (the variable convention
in force at the time of the save). SAVE-LOGIC returns the value
DONE.

If the argumert verify of SAVE-LOGIC is T (the default), then the
user is asked to confirm the destination of the save. The reason
for this optional verification step is that the SAVE-LOGIC
function "completes" any ambiguous pathname that the user
supplies. If this completed pathname 1is not what the wuser
wished, the verification step allows him to provide a complete
pathrname himself.

If the compile argument has value T (the default), then, irn
additiorn to the base being saved in PRINTFACTS format, the file
is compiled and the compiled version is saved (the file having a
.QFASL extension). A compiled knowledge base can be loaded with
the same commands that load a "source" file. The advantage of
compilirg is that compiled knowledge bases load two to three
times faster than "source" knowledge bases.

- 8-1 -
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An example of a call on the SAVE-LOGIC function.

S A A

) (SAVE-LOGIC "D1;KB")

OK to use: #<{FS:LM-PATHNAME LAM1l: D1; KB.LISP#> ># (Y or N)? Y
Saving ...

Compiling ...

DONE

8.1 RESTORE-LOGIC AND LOAD-LOGIC

A knowledge Dbase that has been saved can be reilnstalled using
elther of the two functions

(RESTORE-LOGIC pathname &OPTIONAL (verify T) (package :USER))
or
(LOAD-LOGIC pathname &OPTIONAL (verify T) (package :USER)).

A call on LOAD-LOGIC adds the procedures deflined in the file to

™mi e

the existing knowledge base. The function RESTORE-LOGIC,
however, first removes all existing assertions from the knowledge
base and then installs the file's procedures.
An example:
(RESTORE-LOGIC "D1;KB")
Clearing ...
o OK to use: #<FS:LM-PATHNAME LAM1: D1; KB.LISP#> ># (Y or N)? Y
- Loading ...
< DONE
Since files created by SAVE-LOGIC are Jjust collections of calls
on the macro DEFINE-PROCEDURE, these files may also be loaded
using the LISP primitive LOAD. Further, LISP definitions (i.e.
DEFUNs, DEFVARs, and DEFCONSTs) may be added ¢to files defining
knowledge bases allowlng for actual LOGLISP (LOGIC + LISP) files.
These files may be installed using any of the three primitives:
RESTORE-LOGIC, LOAD-LOGIC, or LOAD.
s
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CHAPTER 9

DEDUCING ANSWERS TO QUERIES

Our informal notion of a query is that it is a description of a
set, in the style: the set of all X such that C. We think of
the process of evaluating such a description as one of deducing
all the different instances X*s of the "answer template" X for
which the condition C¥s is true.

This type of query is formalized by the LOGIC primitives SETOF
and ALL.

For convenience we have also implemented two other query
primitives: ANY and THE. ANY intuitively selects, from the set
described, a subset of one or more of 1its elements (which
particular ones are selected is left undetermined). THE selects
arn. element of the set (which particular one is selected is 1left
undetermired).

Thus, we might ask for: any 3 members of the set of all X such
that C, or: ANY 1 member of the set of all X such that C. 1In
the latter case, the primitive ANY delivers a singleton set. If
we want the member of that set, rather than the set itself, we
ask for: THE X such that C - just as if there were one and only
orie such element. The primitive THE does not test for such
"existence and uniqueness", however. If no instances of X can be
deduced to satisfy C then the "ANY 1" construct returns the empty
set while the "THE" construct returns the message
"No-soluticns-found". "ANY 1" does not care if more than one
instance exists, nor should it. "THE" does not care either - as
it perhaps should, according to the way the ordirary
understanding of the phrase "the ... such that ---" works. We
have preferred to leave the uniqueness issue to the user on the
grounds that to test routinely for non-uniqueness would cost too
much.

In the formal treatment of queries sets are represented by lists.
The wuser can choose (as explained below) whether these are to be
construed strictly as sets (with the overhead cost of patrolling
for and eliminating duplicate elements) or merely as lists (with
possible repetitions).
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9.1 ANY, ALL, THE AND SETOF

The deductior. machinery of LOGIC 1is 1invoked by the deduction
commands: ALL, ANY, THE, and SETOF

The first three are LISP MACROs which may conveniently be invoked
from the terminal or within assertions. SETOF is a function
intended for use by LISP programs.

9.2 ALL

The command (ALL X C1 ... Cn) returns a list of reductions of the

instances of the answer template X with respect to all of the

environmerts which satisfy the constraint (C1 ... Cn) in the

currert knowledge base, [These environments are called the

solutions of the constraint (C1 ... Cn).] If two or mcre

solutions yield the same answer (in the sense that the answer
- expressions are EQUAL) then the list contains just one 1instance
- of the answer, corresponding to the solution obtairned first.

o The answer template X may be a variable, an atom not a variable,
) or a list of expressions. We emphasize that the answers returned
are the expressions (or 1lists of expressions) obtained by
reducing the instances of the answer template in the solution
-. environments, NOT the values of those expressions. The
N expressions need not, after all, be evaluable.

9.3 ANY

N The commarnd (ANY K X C1 ... Cn) behaves in a similar manner,
~ except that no more than K (distinet) instances of X are returrned
N from among those which the corresponding ALL command would
- return. K is expected to be a nonnegative integer.

9.4 THE

b The command (THE X C1 ... Cn) returns the sole member of the list
. (ANY 1 X C1 ... Cn) , 1if there 1is one, and is intended for use
only in contexts where it is known that exactly one solution
exists. If no solution exists for the given constraint, THE {
returns the identifier No-solutions-found.

9.5 SPECIFYING THE DEDUCTION WINDOW

The constraints appearing in invocations of ALL, ANY and THE reed
rnot consist entirely of predications. They may also contain
control specifications, which affect the nature of the search and
treatment of answers, and limit specifications which determine
the deduction window to Dbe wused. The form of a limit

8
-
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-
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specification is
:Limit Value

where ":Limit" is one of :TREESIZE, :NODESIZE, ¢:ASSERTIONS,
:RULES, or :DATA and "Value" is a number, the identifier :INF
(deroting infinity) or a non-atomic expression whese LISP value
is a number or C:INF. Note that the first character of the
keyword is ":" -- all keywords are in the user package. It 1is
most often the case that a user is working in the user package.
In these situations users may omit the ":"s in front of the
keywords. These values determine bounds for the corresponding
parameters of the search window. Thus one might, in the context
of the "tennis" example of Chapter 3, ask for

(ALL x (Male x) (Champion x) (Dlder x Kelly) :RULES 4)

to obtain the set of all those who can be deduced to Dbe male
champions older than Kelly with no more than four applications of
rules.

In the absence of any specification the limits are all taken to
be :INF, except for :RULES, which is never allowed to exceed a
limit determined by the implementation, normally 1500,

9.6 SETOF

The preceding commands are .special adaptations of the basic
gerieral deduction primitive, SETOF.

SETOF takes three arguments. In the command (SETOF S X C) the
arguments S, X and C are (LISP) evaluated before the SETOF
procedure is entered (SETOF is a function).

The first argument S (the "scope 1indicator") 1is an expression
which evaluates either to a nonnegative integer or else to the
identifier :ALL.

The secornd argument X is an expression which evaluates to an
answer template.

The third argument C is an expression which evaluates to a
constraint.

The command (SETOF S X C) returns a 1list of the recursive
realizaticns of the answer template [which is the value of] X
correspordirg to the solutions which satisfy the constraint
[which 1is the value of] C in the current knowledge base. If the
value of S is :ALL, then all such recursive realizations are in
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the 1list returned. 1If the value of S is the integer K, then no
more than K such recursive realizations are returned. Thus the
command (ALL (x y) (Age x 1928 y)) is equivalent to the command

a4
Y "'.' '1"'0"‘
L .

o %

()
«

R

(SETOF (QUOTE :ALL) (QUOTE (x y)) (QUOTE (Age x 1928 y)))
and both return the list
((Turing 16) (Herbrand 20))

as their result, if the current knowledge base contains only the
assertions HERBRAND1, HERBRAND2, TURING1, TURING2 and AGE-RULE.
The command

: (THE logician (Born logician something February 1908))
returns the result: Herbrand .

Recall that the answer template may be a proper name, a variable,
or a list of expressions. In the first case the answer is (with
ornne exception, explained below) just the answer template. If the
template is a variable, each arnswer 1is the reduction of the
recursive realization of the answer template in a solution
environment. If the template is a 1list of expressions, the
answer is the list of reductions of recursive realizations of
expressiocns in the template.

F R e vt B

The exceptional answer template is the integer 0. If the
template is 0, SETOF (or any of ALL, ANY, THE) returns the number
of solutions (not answers) obtained during the search. If the
invocation of SETOF limits the number of answers, this limit is
taker. as a bound on the number of solutions to be found.

9.7 NONDETERMINACY OF DEDUCTIVE PROCESSES

The order of the items in the lists returned by ALL, ANY and
SETOF is not defined, nor is there defined any rule for selecting
a subset of all instances when less than all are requested.

N This ron-determinacy is accompanied by a measure of
S "coricurrency", in that the order in which LISP evaluations will
be performed in the course of various simplifications is also not
specified. The evaluation of a single evaluable expression is,
however, carried out "indivisibly". It is for this reason that
assigrment and other side-effect-producing operations must be
used with caution in LOGIC.
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9.8 CONTROLLING THE DEDUCTION PROCESS

Havirg emphasized the non-determinacy of the deduction process, o]
we should row point out that the user can, in fact, exercise a o
considerable degree of control over it, even to the point of

making it fully deterministic. "o

R B!
s sl

+
v
P LA P

The search conducted by SETOF is a heuristically guided search,
each separate step of which 1is itself a limited depth-first
search, implemented by a backtracking algorithm. Recall that the
estimated solution cost of a node (q env) is computed as.

Y 30n N W]
“'"l"l’l *
¢

Ay
ASSERTIONS(q env) + NODESIZE(q env) Y

kW € ¥ ¥,

This cost estimate is used both to guide the heuristic search ard
to 1limit the depth-first search embedded therein. This works as
follows.

. For each search a cost increment S 1is specified, usually by
- default. The depth-first search 1is initiated by selecting a
l waiting node of minimum cost, say C. The bactracking routine
then explores the deduction tree starting from the selected node,
recording for later consideration any non-termirnal node whose
cost is as large as, or larger than, C + S. When this limited
depth-first search is completed a new "waiting" rode of mirimum
) cost is selected to begin another round of depth-first search,
- arnd so or.

Y
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9.8.1 Search Control

2
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" To specify the cost step (i.e. increment) for a particular
3 search, ore includes a control specification ":CSTEP s" among the
constraints, where s is a positive integer or :INF. Thus
(ANY 2 x (P x 7) (Q x) :CSTEP 6) searches with a cost step of 6.
When rno step is specified a default value, depending on the
rature of the search, is used. Searches which seek all answers
use the value o€ the LISP identifier *ALLSTEP, initially 64, as
the default. Other searches use the value of *CSTEP, initially
4, We take the view that "ALL" searches should be conducted
primarily depth-first, without going so deeply as to run the risk
of stack overflow. Searches which may stop with fewer than all
K solutions are conducted so as to obtain the less costly solutions i
- first. AN
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A pure depth-first search may be obtained as in A
(ALL x (P x 3) (Q x) :CSTEP :INF), or, of course, by adjusting -
the default values appropriately.

1
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9.8.2 Answer Control. Lists Versus Sets

Normally, answers are reduced as explained earlier, and answvers
which duplicate earlier answers (in the sense of EQUAL) are
igrored. To suppress reduction of answers include the control
symbol :ANS-IRRED among the constraints. To require reduction
incorporate the control symbol :ANS-REDUCE. The default control
is given by the value of the LISP identifier ¥*REDUCEANS,
initially T, irndicating that reduction should be performed. The
value NIL indicates that reduction should not be performed.

To disable the check for duplicate answers include the control
symbol :LIST among the constraints. To require the check
irncorporate the control symbol :SET. The default control 1is
giver by the value of the LISP identifier *SET, initially T to
specify that the check for duplicates SHOULD be performed. The
value NIL indicates that the check should NOT be performed.

9.9 M"ONE RESOLVENT" PROCEDURES

It sometimes happens that the programmer can determine that on
every call of a particular procedure at most one resolvent can
lead to success. Such a determination usually depends both orn
the nrature of the queries that can be expected and on the nature
of the clauses which constitute the procedure. 1If it can further
be arranged that this resolvent always results from the first
assertion which yields a resolvent, thern one may wish to inform
the system of these facts by declaring the procedure in question
to have the attribute :ONERES. This is done with the command
(PROCEDURE Pred :ONERES), "Pred" being the predicate of the
procedure. If a special rule (see Chapter 4) is in effect for
"Pred", the special rule is considered to come between data and
rules.

The corditions wunder which one may appropriately choose to
specify a procedure to be :ONERES may seem rather restrictive,
but they are not uncommon in practice. An inappropriate :ONERES
attribution will, of course, have a drastic effect on the meaning
of a procedure, since the system will indeed compute at most one
resolvent for each call, even if more than one resolvent can lead
to success.

9.10 INDEXING CLAUSES FOR QUICK RETRIEVAL

We meritioned irn an earlier chapter that data are automatically
irndexed accordirg to the proper identifiers which occur in them
so that LOGLISP can quickly obtain a (usually small) 1list of
candidates for resolution with a given predication. 1In fact, the
irdexing scheme takes account of FIXNUMs as well, which are

- 9§ -
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hashed 1into a convenient number of equivalence classes, normally
47. For technical reasons, this indexing igrores quotations,
whether formed with QUOTE, FUNCTION, or F-L, and expressions of
the form (CONS ...), since the latter may unify with quotations.
The atom NIL, which occurs very frequently, is also igriored.

The actual indexing method is extremely simple. Associated with
each proper identifier id and each predizate symbol pr in whose
data id occurs, we maintain a list of the data of pr containing
id, along with a count giving the number of data in the list.
When asked to obtain resolvents for a predication q headed by the
predicate pr, the system scans q for proper identifiers, and
attempts unification with only those data in the shortest of the
associated 1lists, examining the entire collectionr of data for pr
in the case that q has no proper identifiers.

9.10.1 Indexing Rules

We provide a rather different scheme for indexing rules, which is
irvoked only at the direction of the programmer. Rule indexing
for a predicate pr is specified by declaring pr to have an
attribute of ¢the form (:INDEX k1 ... kKN), where the k's are
positive integers and k1 > 2. A predicate can have at most one
:INDEX attribute, declaring a new one deletes the old. The
integers k1,...,kN define a path into predications headed by pr,
namely, of the ki1-th entry, the k2-th entry, of which the k3-th
entry, and so on. To illustrate, if we specify (:INDEX 2 1) for
the predicate "Term", then we select from (Term (F x y) ...) the
identifier F. To be effective, the path should be chosen so that
the rules of pr have identifiers at the specified position in
their conclusions, identifiers which will serve to <classify the
rules into a number of (preferably small) subsets. It is not,
however, mandatory that the path be so chosen, and in fact the
path need not even be defined for all rules of pr. An :INDEX
declaration can never affect the results of a LOGIC computation,
only the performance. An inappropriate :INDEX specification may,
however, be just slightly worse than no indexing at all.

Wher. a predication headed by pr is selected for resolution the
system examires the component of the predication at the location
specified by the :INDEX attribute. If this compornent is defired
ard is a proper identifier or FIXNUM, then the corresponding
rules are used as candidates for resolution. In any other case
LOGLISP will still determine a suitable set of candidates,
possibly all of the rules for the predicate pr.
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9.11 SUBSCRIPTED VARIABLES IN DEDUCTIONS

We have already mentioned that variables appearing in clauses are
(implicitly) given subscripts when the clauses are used in
deductions, so as to avoid improper identification of variables.

Variables in the query are given the subscript 0.

For an unsubscripted variable, say x, the system identifies x°0
with x, so as to prevent an ugly profusion of 0 subscripts. No
such identification is made for a subscripted variable such as
y°2, however. Such a variable would appear in the deduction as
y~2°0. When resolving a clause with a constraint, variables in
the clause are given a subscript one greater than the largest
subscript used in deducing the constraint. No new subscript is
introduced when resolving with a datum, nor by the special rules
for ==, AND, OR and COND, which introduce no variables.

Variables in answers require somewhat more discussion.

If a variable from the query appears in an answer it appears in
its original form, without the 0 subscript added at the start of
the deduction. If a variable from a clause appears in an arnswer
the treatment depends on the nature of the query. If it is a
primary query, that is, one invoked from LISP, the wvariable
simply appears with the subscript given in the deduction. If it
is a subsidiary query, that is, one 1invoked recursively within
some ~larger deduction, the query must have resulted from the
reduction of an expression whose variables were given a subscript
i > 0, while in the subsidiary deduction the variable was given a
subscript j > 0. Such a variable, say x, appears in an answer
(to the subsidiary query) as x“j"i. Since subscripted variables
cannot appear in the knowledge base, this prevents unintended
identification of variables in almost all cases of practical
interest. We should point out, however, that if one clause
causes two subsidiary deductions, and the answers to both contain
variables introduced in the course of these deductions, it |is
conceivable that the same variable might appear in answers to
both queries. Even in this case, such variables must appear
inside quotations, and can enter the deductive process only if
they are "exposed" by means of the special construct (LOGIC ...).

At this point the whole subject may seem overwhelmingly
complicated, but we remind the reader that the programmer can
ordirarily 1igrore the matter completely, and that the
implementation achieves these effects implicitly and quite
ecoromically. In particular, variable identifiers like x"372 are
rever created ir the internal workings of deduction; they arise
only when needed for "export" to LISP. A very commen particular
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case of exportation to LISP is, of course, when the variables are
sent to be printed as part of an output.
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CHAPTER 10
MONITORING DEDUCTIONS

Provision has been made for the optional "viewing" of a deduction
process as it is happening. Ideally such a facility would show
the tree of constraints growing during the execution of the
deduction cycle. This would, however, be somewhat extravagant of
display space, and LOGIC has a more modest version of this ides.

10.1 THE MONITOR FACILITY

Execution of the command (MONITOR :ALL) enables the system to
display each successive selected constraint during the deduction

process.

If the selected (implicit) constraint is (Q E) the display shows
the (explicit) constraint Q*{E}. 1In order to give the user time
to reflect, the system pauses once each cycle, and resumes or
receiving a suitable input (normally, a C). The predications
comprising the query Q*{E} are displayed as they exist before any
simplification is performed.

It should be noted that when viewing a developing deduction
process ir this way one may observe some discontinuity in the
display. This is because the selection mechanism may not always
choose a successor of the previously selected constraint, but
rather "resume" some older constraint whose turrn has arrived for
some more "progress". Even when the genetic thread remairs
unbroker., there may be rather drastic changes in the constraint
cwing to the LISP-simplification step of the cycle. The user
will soor. become accustomed to the realities of the MONITOR
display, however, and will find it an enlightening tocol when
sparingly used to slow down and observe the deductive action.

The commar.d (MONITOR :0OFF) disables the MONITOR facility.

Orne need rnot simply continue from the MONITOR pause. The
commarnds or.e can give are as follows {(the prompt is
"Moriitor: (C, X, K, E, or Q)"):

- Contirue searching
Explain deduction

- Discard these constraints
Evaluate an expression
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Q - Termirate search

Respording tco the MONITOR's prompt with the blue HELP key causes
a help message (similar to the five lines above) to be prirted.
Any other input is igrnored and a new prompt is issued. X, E, and
HELP-KEY leave the system in the MONITOR pause. Both X (Explairn)

and E (Evaluate) ask the user for more input. 1In the case of X

orne may enter explanation qualifiers to specify the mode of
explanation (see the rnext chapter). After entering E, the system
prompts for the expression to evaluate.

10.1.1 Controlling The MONITOR Facility

Orie may wish to monitor only selected steps in the deduction. To
do so, one executes the command (MONITOR P1...Pn) for some
predicates P1...Pn. Thereafter, the system will monitor jus=t
those cycles for which the selected constraint begins with a
predicatior. whose predicate is among P1...Pn. We say that the
predicates specified have beern "flagged" for monitoring. To
monitor empty constraints (successes), flag the identifier NIL,
with, perhaps, other predicates. One can flag additional
predicates by executing a similar MONITOR command, or "unflag"
certain predicates with a command (UNMONITOR P1...Pn).
(UNMONITOR :ALL) unflags all currently flagged predicates.

The (MONITOR :OFF) and (MONITOR :ALL) commards operate
irdeperdently of flagged predicates, and without changing the
flags. The command (MONITOR :ON) re-establishes selective
moritoring.

One may also wish to observe constraints after simplification as
well as before. The command (MONITOR 2) causes the system to
print the constraint after simplification, in addition to the
rormal display before simplification, provided that the
constraint was altered ir some way by simplification. If
selective monitoring is in effect, the decision as to whether the
cycle should be meonitored at all is still based or the initial
predicate of the selected constraint, before simplification. The
commarrd (MONITOR 1) restores the normal mode, printing the
constraint before simplification only.

The riumerals "1" and "2" can be included irn MONITOR commands
which flag predicates, in which case they have the same effect as
wher. they stand alone. The key words :0FF , :ON ard :ALL are not
recogr.ized in such commands, however, so the command
(MONITOR :OFF Male) would flag the predicates :0FF and Male arnd
erable selective moritoring.
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10.2 THE PURR FACILITY

It is often desirable to be able to see in some direct way that
the deduction process 1is taking place, without necessarily
slowing it down to the extent that the MONITOR facility entails.

The commard (PURR :ALL) enables just such a facility, the PURR

DARNLIAL

facility.
A The PURR facility consists of a running display accompanying the
deductionn process. It 1involves the printing of a few single

characters per cycle. No 1line feed 1is given after printing
(except at the physical end of a line) so that the characters
form a continuous string. The meaning of each character 1is as
follows:

¢

L e e e 4 o
e INERENE

Character Meaning

{ Start of a new query

- (hyphen) Start of a new cycle

P Selected constraint a success

U Selected predication is NIL (false)

R Resolvents of selected constraint obtairned

X Selected constraint failed for lack of
resclvents

c A continuation popped up

L Selected constraint failed due to window
limit

] Completion of a query

The PURR facility is disabled by the command (PURR :0OFF).

Thus with the PURR facility on the following transaction would
cccur:

(ALL (x y) (Age x 1920 y))[-R-R-R-P-R-P]
((Turirg 8.) (Herbrand 12.))

The "PURR string" shows that the deduction took six cycles,
invoked four procedures and found two answer envirorments.

Note that if a query is invoked within the processing ¢f another
query the PURR string will ccontairn rested bracket pairs. As with
the menitor facility, control is based orn the iritial predicate
of the selected constraint, and predicates are flagged for
purring with commands of the form (PURR P1...Pn), unflagged with
commands of the form (UNPURR P1...Pn). Empty constraints
(successes) are selected by flagging NIL, as with MONITOR. The




key words :0FF, :0ON and :ALL are used exactly as with MONITOR.
Numerals are allowed irn PURR commands, but have no effect.

One may nest calls of PURR and MONITOR, as in
(PURR (MONITOR :ALL)), which enables both PURRing and MONITORirng
on all cycles. The same is true of UNPURR and UNMONITOR.
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CHAPTER 11
EXPLAINING DEDUCTIONS

Once a deduction has been completed arnd its answer list obtaired,
one may call for arn explaration of the reasoning by which some or
all of the answers were deduced.

For instance, the following transaction consists of first
cornstructing the answer list for the query
(ALL (x y) (Age x 1920 y)) and then requesting an explaration for
the secord item.

(ALL (x y) (Age x 1920 y))
((Turing 8.) (Herbrand 12.))

(EXPLAIN 2)

To show:*
((Age x 1920. y))

it is enough, by
(AGE-RULE (Age x 1920. y) <-
(Born x [] [] birth-year1) &
(== y 1920. birth-year1)))
to show:
((Borrn x []1 [] birth-year1) (== y 1920. birth-year1)))

ther it is ernough, by
(HERBRAND1 (Born Herbrand 12. February 1908.))

to show:
((== y 12.))

thern it is enough, by
(REFLEXIVE-LAW (== Reflexive Law))

to show: 3
NIL -:.:.:.;
DONE e

The (EXPLAIN 2) command causes an explanation of the answer
(Herbrand 12.) to be printed. The successive constraints leading




to the answer are exhibited, and the clause activated to cause
each transition is shown. The activated clause is shown with
respect to the environment part of the resulting constraint (i.e.
after the activation has extended the environment).

Various further inflections are provided with the EXPLAIN
commarnd. (EXPLAIN :ALL) provides explanations of all arswers.

(EXPLAIN N1 ... Nk) provides explanations of the Nist, ..., Nk'th
answers. (EXPLAIN) is the same as (EXPLAIN 1).

Explanations can be produced only when the history facility is
ernabled, which normally it 1is not. The history facility is
ernabled by (HISTORIES :ALL), disabled by (HISTORIES :0FF).
Ernabling the history facility c¢an impose sigriificant overhead cn
the system, particularly when the deduction tree must be searched
to great depth.

The answers which one can have explained are those produced by
the most recently completed invocation of ALL, ANY, THE or SETOF.
If there are no such answers EXPLAIN will simply respord

Nothing to explairn
DONE

Ar attempt to select a non-existent answer will be igrored,
except that a note to that effect is typed.

11.1 ALTERNATIVE EXPLANATION MODES.

The EXPLAIN facility is considerably more flexible than indicated
by the example just discussed, which illustrates only the normal
mcde of explanation. One can obtain explarations in a variety of
styles. The variations are specified by typing qualifiers in the
commard following the selection of the answers to be explained.
To illustrate, the command (EXPLAIN 2 :NAMES :FINAL ) would prirnt
a similar sort of explanation, except that only the rnames of the
clauses would be printed, and the constraints would all be
recursively realized in the solution environment.

11.1.1 Specifying Items To Be Included.

Besides constraints and clauses, one may also instruct the system
to prirnt answer templates at each stage of the explaration,
irnstantiated and simplified. One may also print rnames of clauses
rather thar printing clauses in full.

Whern names of clauses are to be printed the system will construct
rames for clauses for which the user has not specified names.
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These "manufactured" names have the form (Pred :RULE k) or
, (Pred :DATUM k), following the conventions discussed in Chapter
. 6. User-supplied rames are usually taken just as specified, but
one can request "long" names, in which case the name given by the
user is combired with the principal predicate symbol to form a
list "(Pred Name)". Manufactured names are always in the long

format. ﬁiﬁ
Rt
The qualifiers which control all this are the followirng: fﬁ%
:ASSERTIONS Print clauses in full (Default]
¢NAMES Prirt names of clauses
:UNNAMED Print clauses which lack user-supplied
rames, print names where available
:LONG Print all raames in long format S
:SHORT Print user-supplied rames in (Default]
short format
:CONSTRAINTS Print constraints [Default] SRS
:NOCONSTRAINTS Omit constraints R
’ :ANSWERS Print answer templates T
- :NOANSWERS Omit answer templates [Default]
' :CONTINUATIONS Print continuations with constraints f.i
:NOCONTINUATIONS Omit continuations [Default] e
If :NOCONSTRAINTS is specified the format of the explanation |is .
ad justed accordingly. If :NOCONSTRAINTS, :NOANSWERS and :NAMES "

-
are all specified the explarnation is simply a list of the names Y
of the <c¢lauses used, with no ornamentation. The default N~
selection betweern :CONTINUATIONS and :NOCONTINUATIONS carn be N
changed by (CONTINUATIONS :ON) or (CONTINUATIONS :0FF). >

If *ASRNNUMBERS is non-NIL then anonymous clauses printed ir R
explaratiorns will irnclude rumbers, as explairned -earlier in Ny

Chapter 6. i

e

11.1.2 Specifying Environments To Be Used. T

; We remarked earlier that the normal explanation shows each step SRS
& of the derivation in the environment current at that step. One N
carn,, however, specify other choices as follows: Liﬂ
- :INITIAL Use initial (empty) environment RO
4 :CURRENT Use current environment [Default] -
- :FINAL Use final (solution) environment N
. 3
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When the :INITIAL environment is specified constraints are shown
in the current environment, as nothing earlier makes any sense,
while clauses are shown in the form in which they appear in the
knowledge base. Note that the :ANSWERS option is useful only irn
conjunction with :CURRENT, though other combinations are allowed.

Anything other than a qualifier appearing in the command will be
igrored, with a warning message to that effect typed to the user.

11.2 LIMITING EXPLANATIONS

The full explanation of an answer, as normally produced by
LOGLISP, carn be quite lengthy, and one might wish to limit the
explanation by omitting certain uninteresting steps. If one sets
(HISTORIES :0N) then histories recorded by the system will
irclude only those deduction steps which wuse clauses from
procedures whose predicate symbol has the attribute :HIST, as
might be declared by the command (PROCEDURE Pred :HIST) [(see
Chapter 5].

The following example shows the effect of including only steps
using the procedures Age and = in the deduction of Herbrand's age
in 1920.

(ADD-DECLARATION :HIST Age =)
:HIST

(HISTORIES :ON)
ON

(ALL (x y) (Age x 1920 y))
((Herbrarnd 12.) (Turing 8.))

(EXPLAIN 2)

To show:
((Age x 1920. y))

it is erough, by

(AGE-RULE (Age Herbrand 1920. y) <-
(Born Herbrarnd (] [] 1908.) _&
(== y (- 1920. 1908.)))

to show:
((z= y 12.))

ther it is ernough, by
(REFLEXIVE-LAW (== Reflexive Law))
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to show:
NIL
DONE

One observes that the omitted steps are not entirely igrored,
sirce the bindings these introduce may influence the appearance
of the steps which are retained in the explanation.

11.3 OBTAINING EXPLANATIONS IN LISP.

The system contains a number of functions which allow the LISP
programmer to get at the basic material of the explanations. The
programmer can then format explanatory material in whatever way
he finds convenient. The first argument ¢to each of these
furncticons is an "answer rumber"”, which 1is the number of the
answer to be explained, just as might be typed to EXPLAIN. The
effect on these functions of predicates with the :HIST attribute
is analogous to the effect on EXPLAIN.

(EXPLNAMES ANSNMB)

returns a list of the rames, in long format, of the clauses used
to derive the answer, in the order used.

(EXPLASSERTIONS ANSNMB ENV)

returns a list of the clauses used to derive the answer, in the
order wused. Here ENV should be one of the atoms :INITIAL,
:CURRENT, :FINAL, to specify the environment in which the clauses
Wwill be shown. Each clause is represented by a list

(Pred Datum/Rule Name/Number Head Tl ... T1)

where "Pred” is the principal predicate symbol, "Datum/Rule" |is
either the identifier :DATUM or the identifier :RULE, according
toc the classification of the clause, "Name/Number"™ is the
user-supplied riame or system-marufactured number, ard the
remairing entries are the predications of the clause.

(EXPLCONSTRAINTS ANSNMB ENV CONTNS)

returrns a list of the constraints arising in the derivatiorn,
begirrning with the original query and ending with NIL. Here ENV
specifies the ervirorment as before, except that :INITIAL is
treated the same as tCURRENT. CONTNS should be T if
continuations are desired, NIL otherwise. The entries of the




list returned by EXPLCONSTRAINTS are themselves lists of some
complexity. If the constraint irn question has no continuatiorn,
the correspording entry has the form:

((q1 ... gN))

where qi is a predication. If the constraint has a continuation,
but CONTNS is NIL, the entry will have the form

((q1 ... gN) CONTINUED)

while if the constraint has a continuation and CONTNS is T, the
entry has the form

((q1 ... gqN) (p1 ... pM) ...)
where pi is a predication of the continuation, which may itself
be followed by another continuatior, and so on.
(EXPLTEMPLATES ANSNMB)
returns a 1ist of answer templates shown in the successive

:CURRENT envirorments, beginning with the original template and
ending with the actual arnswer.

All of these functions follow a commor convention regarding
exceptions. If the answer number specified does not correspond
to an existing derivation the result is the atom :NO-EXPLANATION.
If the most recent search was performed with the history facility
disabled the result is NIL.
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CHAPTER 12
INTERACTING WITH LOGLISP

In the present chapter we discuss the mechanics of runring
LOGLISP, obtaining information, controlling the operating modes
and default settings, and some points dealing with errors.

12.1 RUNNING LOGLISP

Before rurnring LOGLISP, LOGLISP must be loaded. To load LOGLISP,
simply type at a lisp listener the following:

(LOAD "<fs>:<dir>;LOAD")

The Lisp Listener will respond with:

Loading <fs>: <dir>; LOAD.LISP > into package USER

Leoading <fs>: <dir>; PACKAG.LISP > into package USER

Loading <fs>: <dir>; GLOBAL.LISP > into package USER
#<FS:LM-PATHNAME "<fs>: <dir>; LOAD.LISP#>">

where <fs> and <dir> are the file system ard directory,

respectively, on which the LOGLISP system lives. To complete the
loading process, type:

pATAAY !'-’, ".~..-.v '-. '.' K

Yo

(LOAD-LOGLISP)

v
.9 9

The Lisp Listener will respond with:

s

Loading <fs>: <dir>; SUPORT.LISP > into package LOGLISP
Loading <fs>: <dir>; USER-INTERFACE.LISP > into package LOGLISP
Loading <fs>: <dir>; ENVIRX.LISP into package LOGLISP
Loading <fs>: <dir>; UNIFCN.LISP into package LOGLISP
Loading <fs>: <dir>; SUBSCR.LISP into package LOGLISP
Loading <fs>: <dir>; SHOWNG.LISP into package LOGLISP
Loading <fs>: <dir>; RDUCTN.LISP into package LOGLISP
Loading <fs>: <dir>; PROCBS.LISP into package LOGLISP
Loadirg <fs>: <dir>; RESLTN.LISP into package LOGLISP
Loading <fs>: <dir>; HEAPMX.LISP into package LOGLISP
Loading <fs>: <dir>; UNDFPR.LISP irto package LOGLISP
Loading <fs>: <dir>; SEARCH.LISP into package LOGLISP
Loading <fs>: <dir>; SCHIFC.LISP into package LOGLISP
Loading <fs>: <dir>; PRNTNG.LISP into package LOGLISP

VVVVVVVVVVVYV




Loading <fs>: <dir>; EXPLNG.LISP
Loading <fs>: <dir>; EDITNG.LISP
Loading <fs>: <dir>; SAVRST.LISP
Loading <fs>: <dir>; CONTRL.LISP
Loading <fs>: <dir>; SYSINT.LISP
Loading <fs>: <dir>; MISCEL.LISP
Loading <fs>: <dir>; MENU.LISP > into package LOGLISP

into package LOGLISP
into package LOGLISP
into package LOGLISP
into package LOGLISP
into package LOGLISP
into package LOGLISP

 VVVVVYV

LogLisp, version V3M1Xi4-Z
Copyright 1984, Syracuse University

{current time and date>
'Y

LOGLISP is now ready to use.
12.2 INITIALIZATION

The system starts out with arn empty knowledge base. Ore may
re-initialize the LOGIC part of the system at any time by
irvoking the functiorn START.

(START)

leaves ar. empty kriowledge base and resets the operating mcde
corntrols and system defaults to their stardard values. LISP
functior definitions, file descriptions, and identifier values
are not changed, except for those values which are used in system
control.

12.3 INFORMATION

Wher. interacting at the top level of LOGLISP, i.e. ¢typing at a
Lisp Listener, brief instructions may be obtained by typing HELP.
A complete list of the functions which constitute the wuser
interface to LOGIC, along with some other useful functions, is
typed by the command (HELP), which may also be typed at the top
level of LISP. In the MONITOR pause, in FACTS, and other times
when LOGLISP is asking the user for input, help may be obtained
by striking the blue HELP key.

Abbreviated irnstructions for usirg ary of the LOGIC interface
functicns (ASSERT, THE, ALL, ANY, etc.) can be obtaired by
irvoking the command (DOCUMENTATION 'fr.), where "fr." is the name
of the function in question.
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12.4 CONTROL

The earlier chapters of this report mention a number of functions
used to control various operating mocdes, as well as several
defaults used by the system. 1In this section we shall summarize
. the control functions and explain the treatment of defaults in
N somewhat greater detail.

- 12.4.1 Control Functions

With the exception of PURR and MONITOR (see Chapter 10), all of
the control functions take one argument, which should be :0ON or
:OFF, and return the argument after altering the system state
appropriately. These function calls may be nested. To
illustrate, the command (HISTORIES (CONTINUATIONS :ON)) erables
both the recording of HISTORIES and the printing of
CONTINUATIONS.

Several of these functions operate simply by setting the value of
a LISP identifier, in which case NIL represents :0FF, while
anything else represents :ON. (PURR, MONITOR, and HISTORIES use
¢tALL to represent the state selected by :ALL.) The identifiers so
used may be changed directly by LISP programs, or accessed by
them as may seem useful. The table which follows lists the names
of the control functions, the initial settings, and, where
applicable, the identifier set by the function.

Funetion Initial Setting Identifier
PURR :OFF %*PURR
-, MONITOR :OFF #MONITOR
2 CONTINUATIONS :OFF BECONTINUATIONS
- HISTORIES :OFF BHISTORIES
ASK :ON ®pASK
AUTQ-== :ON [Norne]
AUTO-AND : ON [(Nore]
AUTO-OR :ON (Nonel
AUTO-COND :ON [None]

Initial settings are reestablished by START. The facility
coritrolled by ASK is described below in the discussion of errors.

< 12.4.2 Defaults

- Both ir specifying deduction wirdows ard in requesting
explanations the user normally relies on many defaults. These
are rnot, in fact, determined rigidly by the sytem, but may be
ad justed by the user. The standard default settings are,
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however, restored by (START).

12.4.2.1 Deduction Wirndow And Search Defaults - The defaults for
deductior windows and search parameters are the values of the
LISP identifiers listed below, along with their initial values.

Identifier Initial Value
*TREESIZE : INF
ENODESIZE : INF
#ASSERTIONS : INF
®*RULES 1500
®DATA : INF
*CSTEP 4
®ALLSTEP 64

Each of these gives the default value for the corresporndirng
window 1limit. The implementation constraint on the number of
rules in a single deduction will be rigorously enforced, even if
®RULES is made larger than this limit.

The values which one may assign to these identifiers are the atom
:INF or any non-riegative integer.

12.4.2.2 EXPLAIN Defaults - The default qualifiers for EXPLAIN
are similarly controlled by a collection of LISP identifiers.
The table below shows the identifiers, the set of values each is
allowed to take, and the initial value.

Identifier Value Set Initial Value
®*EXPLASSERTIONS {:ALL :SOME NIL} :ALL
#CONSTRAINTS {T NIL} T
*LONGNAMES {T NIL} NIL
®ANSWERS {T NIL} NIL
#CONTINUATIONS {T NIL} NIL
S*ENVIRONMENT {:FINAL :CURRENT :INITIAL } :CURRENT

Note that ®CONTINUATIONS 1is controlled by the functiorn
CONTINUATIONS, and affects the monitoring facility as well as
EXPLAIN.
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12.5 ERRORS

N
N Errors can arise either in LOGIC or in LISP.
i 12.5.1 LISP Errors

3 Errors detected by LISP will result in entry to the LISP error
. handler in the usual way. If the error arose during reduction a
. backtrace will show none of the workings of the reduction

machirery, which 1is probably the best course the system could
take.

; All of the LISP facilities for recovery and analysis are
: available.

Note that misspelled function names in LOGIC terms will rot 1lead
to undefined function errors, simply to expressions which are rnot
evaluable.

" Although the LISP recovery facilities are available, orne should
- rot attempt to edit assertions during a break.

12.5.2 LOGIC Errors

Earlier chapters explainred how syntax errors are handled by
ASSERT and FACTS. There is one other type of error which can be
detected by LOGIC -- the "undefined predicate" error.

PR M A

A predicate is considered to be undefined if it has neither a
LISP definition (as a function) nor a LOGIC definition (as a
procedure of one or more assertions). If such a predicate is
ericountered during a search, and if the ASK facility is enabled
(as it is 1initially), the system will ask the user for
instructions, after first printing a message specifying the
urndefined predicate.

;’ The prompt for instructions is:
What's rnext? (C, F, S, E, P, or Q)

The following help text will be displayed if the user strikes the
blue HELP key:

- Respornd with:

N to continue searching

to execute FACTS

to correct spelling

to evaluate an expression and print the result
to print the current state

omWnnTO




Q to abandor. the search

Anything other than the inputs specified causes the system to
remain ir the ASK state. If the user does anything which might
conceivably alter matters, the system will try again to simplify
ard obtain resolvents.

The automatic spelling correction attempts to find a predicate
(defined by LOGIC) which closely matches the undefined predicate.
If successful it informs the user of the chosen predicate, if not
successful it informs the user of that fact. Spellirg
corrections are accomplished with RPLACA, so the effect may reach
beyord the immediate situation. When the undefined predicate
occurs as an instance of some variable, spelling corrections are
probably unwise, and the user is warned of such circumstances.
Afterwards it may help to run with (HISTORIES :0FF).

12.5.3 LOGLISP Utilities

Some of the LOGLISP system utility functions may be of wuse to
- programmers. The names of these functions are not reserved.

(VARIABLE e) (FUNCTION]

returns T if e is a LOGIC variable, NIL otherwise. The closely
related form (Variable "e") may conveniently be wused in
assertions to distinguish variables from other expressions (see
Chapter u4).

(Version) [{FUNCTION]

prints a message identifyirng the version of LOGLISP in use.

(HELP) [FUNCTION]
prints a classified list of logic system functions.
(RTIMER "expr") [MACRO]

evaluates "expr", prints timing information about the evaluation,
and returns the value thus obtained. RTIMER prints the number of
seconds spent evaluating expr, the number of resolvents computed,
the rate at which they were computed (in LIPS "logical inferences ~
per second"), the rnumber of simplifications performed, and the O
combined rate at which both resolvents and simplifications were '

performed ((resolvents + simplifications)/seconds). By a N
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